GP-ENGINE - Migrating Al/ML workflows to
Nautilus

Introduction to Containers and Kubernetes
Support provided by NSF OAC#2322218
November 2025

Mathew Keeler- Mizzou HPC
University of Missouri

https://jhurt.mufaculty.umsystem.edu/

GREAT PLAIN! NORK

Learning Objectives

Containerization and Docker
Kubernetes Architecture and Concepts
Hands-on with Nautilus HyperCluster

Deploying Pods and Jobs in Kubernetes using
Nautilus

Ve S VetV Y

GPN

GREAT PLAINS NETWORK

Workshop Outline

» Software Containerization with Docker
» Containerization basics

» Docker concepts: Pods, Jobs, etc.

» Container management with Kubernetes
» Introduction to Kubernetes
» Kubernetes concepts
» Kubernetes usage

» NRP Nautilus HyperCluster
» Cluster introduction, background and resources
» Case Study: How MU utilizes Nautilus
» Hands on with Kubernetes in Nautilus

Part 1
Software Containerization

with Docker

Introduction to Containers and Kubernetes

ttttttttttttttttttttttttttttttttt

Introduction

GREAT PLAIM

The Problem:
277

» What challenges have you had
with using scientific software or
software in general?

» Share with your neighbors and try
to come up with a list of common
challenges or annoyances.

I I
Compute Server

1n

Local Machine

Cloud

GREAT PLAIM

he Problem:
Scalability & Reproducibility

» Development often occurs on
local development machines

» How do we ensure reliable
portability of the software
developed on local development
machines to other computational
environments?

» How do we move code from local
development to running on large
servers on large swaths of data?

I I
Compute Server

1n

Local Machine

Cloud

GPPN

GREAT PLAINS NETWORK

Example: Python Application for Image Processmg.gi

» |’ve built an application on my local
machine to enable efficient image
processing using Python 3.8

» My application requires certain Python
packages AND system packages Python 3.8 b 4

» The specific versions of Python and the
system packages are required
» How do | move my application to co-
worker’s computer? What about to a XN
compute server? To the cloud? gi XN @
» Each of these locations will have their own —

installed system libraries, python installations, Python 3.11 Pytho.n 35 Python 3.7

and python packages Windows 11 CentOS 8 Ubuntu 18.04

Containerization

» Solution: Package all of our 2 \ ; :
requirements, at system level and S — \,;- 44
at the language-specific level, into g 5 :

Python 3.8
a software package, called a

container image, that can be run
anywhere

» Each location now only needs a 5 oo L,
container runtime and the g (oo] e

software package

10

GPN

GREAT PLAINS NETWORK

Container Runtimes

» Container runtimes are software components that
run containers on a host operating system Containerized Applications

» Every machine that we want to run containers on
needs a container runtime
» There are multiple container runtimes: s | gl s s s 8
» Docker: most common

» Podman: RHEL/CentOS replacement for Docker. Does not

require root access
4 . 3 . A Host Operating System
» Singularity: Common in HPC applications

» We will discuss Docker here, as its concepts are
generalizable to other runtimes

11

GPN

GREAT PLAINS NETWORK

Docker

» What is Docker?

» Docker is a set of platform as a service products)
that use OS-level virtualization to deliver Client | [DOCKER_HOST) Registry)
software in packages called containers.!
X 1 .. docker build --{--- = /{ Docker daemon] pr
» You can think of Docker containers as mini-VMs // / S TR & S
that contain all the packages, both at the OS docker pull 1 N,]~ | ¢
and language-specific level, necessary to run - j \-\ @—;— N
your software. docker run BB ‘_\ = 5 /é NGINX
. ~. : . /
» Why Docker? B /./‘ ,

e

Uiy

» Docker enables predictable and reliable
deployment of software. 2 éA i

¥

e

g

» Docker containers are portable!

» local development computers, compute
clusters, internal compute servers, cloud
infrastructure, and more!

» Docker containers enable reliable
portability of software to nearly any
compute environment

1. https://en.wikipedia.org/wiki/Docker (software) 2
2. Image: https://docs.docker.com/get-started/overview/ 1

https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/

[

GREAT PLAINS NETWORK

Docker: Containers vs Virtual Machines

Containerized Applications

Host Operating System

Containers are an abstraction at the app layer that
packages code and dependencies together. Multiple
containers can run on the same machine and share the
OS kernel with other containers, each running as
isolated processes in user space. Containers take up less
space than VMs (container images are typically tens of
MBs in size), can handle more applications and require
fewer VMs and Operating systems.

Virtual Machine

Guest
Operating
System

Virtual Machine

Guest
Operating
System

Virtual Machine

Guest
Operating
System

Virtual machines (VMs) are an abstraction of
physical hardware turning one server into many
servers. The hypervisor allows multiple VMs to run
on a single machine. Each VM includes a full copy
of an operating system, the application, necessary
binaries and libraries - taking up tens of GBs. VMs
can also be slow to boot.

https://www.docker.com/resources/what-container/

13

Docker Concepts

GPN

GREAT PLAINS NETWORK

Key Docker Concepts

» Container - A container is a standard unit of software that

packages up code and all of its dependencies, so the |
application runs reliably from one computing environment | &t > PN -
to another. e

» Image - Standard unit of software that packages up code Containerized Applications

and its dependencies so the application runs reliably from
one computing environment to another.

» Includes everything needed to run an application: code, runtime,
system tools, system libraries and settings.

» Dockerfile - A list of commands and instructions describing |
hOW to bUild an Image Host Operating System

» Registry - a service for storing container images

https: //www.docker.com/resources/what-container/ 15
https://phoenixnap.com/kb/docker-image-vs-container

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container
https://phoenixnap.com/kb/docker-image-vs-container

GPN

GREAT PLAINS NETWORK

Containers vs Container Images

» The terms containers and images are often
used interchangeably when discussing Docker,
but there are some key distinctions

» Container images are software packages that
include all necessary software to run the

application/library _
) . R .) b 4 Python 3.8 b 4
» Containers are an instantiation of container :
images Container Image

» Images become containers at runtime

» Analogous to relationship between a script and the
process or a class and an object

16

GREAT PLAIN! WORK

Dockerfiles

» Recall: Containers and container images
enable reliable portability of software

» We need a way to build container images
in a distributed and standardized way, so
that anyone with a container runtime can
build and run our software package
(container image)

» Dockerfiles are the template, or recipe,
for how a container image will be built

» Dockerfiles use a custom format and set of
commands to describe how a container
image will be built

Dockerfile

m

(0 [0 [
(I (I (0 [0 (I P

Docker

}

—

Runnable Container Image

17

GPN

GREAT PLAINS NETWORK

Using Community Published Container Images

» Container images are extensible!

» Containers can be built from other images

» We can then build hierarchical docker containers, where each container has
a specific set of dependencies and packages installed

» Base images enable rapid and reproducible building of even complex docker
containers by leveraging the open source, published docker images

h 4

Example: Jupyter Docker Images'

18
1. https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html

N

GREAT PLAINS NETWORK

Dockerfile: Common Commands

» Dockerfiles function via a set of directives and their respective arguments:

DIRECTIVE arg1 arg2 ...

» FROM

>

The FROM command defines the starting point for the Docker build process. If you are building custom software from the ground up, you
may be setting this to a Linux operating system, such as ubuntu.

If you are working in a framework or programming language, this may also be a certain version of that framework, such
as python:3.8, node:8, pytorch:1.8, etc.

The docker image specified in the from command must be present either on the public docker hub repository, or be visible to the build
context via a full URL.

» ENV & ARG

V' vV VYV WY

The ENV and ARG commands define environment variables during the build process. There are 2 key differences between them:
ENV commands persist to the final container, so ENV key value will persist to the launched container, while ARG key value will not
ARG commands can be overridden at build time, which allows for templating of Dockerfiles

The ENV command is very useful for tasks like ensuring your executable is present on the PATH of the container, while ARG is useful for
things like ensuring you are building the correct version of the software.

19

GPN

GREAT PLAINS NETWORK

Dockerfile: Common Commands
» CMD and ENTRYPOINT

» The CMD and ENTRYPOINT commands both set the command to be run when the container starts via a docker run command.

» Thereis 1 key difference between them: a CMD can be overridden via either a downstream Dockerfile (i.e., someone uses your

container in their FROM command) or via the command line during container startup. An ENTRYPOINT cannot be as easily
overridden, and requires a special flag to be overridden.

» Best practice is to set a CMD unless you have reasoning behind using ENTRYPOINT

» COPY

» The COPY command is how local files are copied into the container. Recall that Docker containers are mini virtual machines,

meaning that it has its own filesystem. In order to build and run software in docker, we often need to copy our code and scripts
into the container. To do this, we use the COPY command

» RUN

» The RUN command tells the docker build process to run a command inside the container. This could be everything from installing
a package with apt (RUN apt install) to creating and removing files in the container.

» The commands available for the RUN command are determined by the base container, i.e. apt will only be available in Debian
based containers.

20

GPN

GREAT PLAINS NETWORK

Sample Dockerfile

ARG PYVERSION=3.8 <«

RUN mkdir -p /workspace

FROM python:${PYVERSION} —_—

Create a build argument for the python version
that defaults to 3.8

Start FROM an existing image in a Docker registry.
In this case, python

WORKDIR /workspace

COPY /requirements.txt /workspace

RUN pip install -r ./requirements.txt

COPY /*.py /workspace/

Create a directory named /workspace and set it as
the working directory

A

Copy a file named “requirements.txt” from the
build directory to /workspace in the container

Use pip to install the requirements defined in
requirements.txt

A

CMD /bin/bash «

Copy all python files in the build directory to the
/workspace directory in the container

Set the default command to run when the
container starts to /bin/bash

21

GREAT PLAIN! WOR

Distributing and Sharing Containers

» Container runtimes enable reliable

portability of software by building
container images

Dockerfile Docker

Container Image

» We can utilize container images built
and published by the container
community utilizing base images

» How do we share and distribute
container images that we have built?

» Container Image Registries

N

GREAT PLAINS NETWORK

Docker Image Registries

» Container Re%istries are web-enabled storage
locations for Docker container images

» Similar to Google Drive for documents and spreadsheets

» Each image published on a registry contains a name
and a tag:

» python:3.8 o Python is the name of image and 3.8 is the tag

» If a URL is not specified, the default registry used is
Docker Hub

>

» Other Container Registries

» Docker can work with third party container registries when given
full URL to the image

» Example: nvcr.io/nvidia/pytorch:22.08-py3
» Security and Visibility

» Container images published on registries can be public or private

7

)

23

https://hub.docker.com/
https://hub.docker.com/

Revisiting our Example

» We can publish our container
image to a registry, and then
pull down our container image
in each computing environment
in which we want to use it

» We can utilize public registries,
like Docker Hub, or private
ones, to control who we allow to
pull down our container

]I

— @

Dockerfile Docker Container Image

Ii Container Registry T

r%_;m

O = &

24

GREAT PLAIN! WORK

Do Now:

»Sign into “Jupyter” -
»Sign into “Nautilus” - https://nrp.ai/

» Links are available in the Attendee Guide

» |f you signed in, put up a yellow sticky note
» If you have an error or issue, put up a [l sticky note

48

http://gp-engine.nrp-nautilus.io/
http://gp-engine.nrp-nautilus.io/
http://gp-engine.nrp-nautilus.io/
http://gp-engine.nrp-nautilus.io/
http://gp-engine.nrp-nautilus.io/
https://portal.nrp-nautilus.io/

Part 2
Container management with

Kubernetes

Introduction to Containers and Kubernetes

ttttttttttttttttttttttttttttttttt

Subsection Outline

» Introduction to Kubernetes
» Kubernetes concepts

» Kubernetes usage

» Kubernetes hands on

50

Introduction to Kubernetes

GPPN

GREAT PLAINS NETWORK

Kubernetes

» Kubernetes, also known as K8s, is S
an Open Source SyStem for l Key Value Store - etcd r v -‘\
automating deployment, scaling, N_N—l— Kubelet -
and management of containerized ' ' Contaner Runtime
applications.’ W Cocher Pod
. — Pro tiona Ons
» Kubernetes enables both simple Sehedler ubepon) | | *ions. v
and complex container —vp —
orchestration
. Kubelet -
» Kubernetes cluster has two main l
Container Runtime
components (Docker)
» Master node Opional Add Ons . m;r)
» Worker node . —
1. https://kubernetes.io/ 52

2. Image: https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
3. Logo: https://commons.wikimedia.org/wiki/File: Kubernetes logo_without workmark.svg

https://kubernetes.io/
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://commons.wikimedia.org/wiki/File:Kubernetes_logo_without_workmark.svg

GPN

GREAT PLAINS NETWORK

Kubernetes
Master node

» Also known as the Control Plane, it is responsible = Master Node
for managing the state of the cluster

» APl server: interface between master node and
the rest of the cluster

» etcd: distributed key-value store that stores the

Key Value Store - etcd

cluster’s persistent information - <« Controllers
: : erve
» Scheduler: responsible for scheduling pods onto ‘
the working nodes > Scheduler
» Controller manager: responsible for runnin% T
controllers that manages the state of the clusters

such as replication controller and deployment
controller

1. https://kubernetes.io/
2. Image: https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
3. Logo: https://commons.wikimedia.org/wiki/File: Kubernetes logo without workmark.svg

53

https://kubernetes.io/
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://commons.wikimedia.org/wiki/File:Kubernetes_logo_without_workmark.svg

GPN

GREAT PLAINS NETWORK

Kubernetes
Worker node

» The physical machine where the operations
takes place, it can run one or multiple pods

» Kubelet: deamon that runs each working node

» Container runtime: is responsible for pulling
images from the registry, starting and
stopping containers, and managing the
container resources

» kube-proxy: responsible for routing traffic to
the correct pod and provides load balancing
so that the traffic is distributed evenly
between the pods

1. https://kubernetes.io/

Kubelet

Container Runtime
{Docker)

Optional Add-Ons
(DNS, UL...)

2. Image: https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams

3. Logo: https://commons.wikimedia.org/wiki/File: Kubernetes logo without workmark.svg

Network Proxy
(kube-proxy)

54

https://kubernetes.io/
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams
https://commons.wikimedia.org/wiki/File:Kubernetes_logo_without_workmark.svg

Kubernetes concepts

GPN

GREAT PLAINS NETWORK

Key Kubernetes Concepts

Pod

» Pods are the basic scheduling unit of K8s.

» Pods consist of one or more containers
running inside. Each pod has a unique IP
address to enable micro services or
applications

» Pods can run custom scripts (initcontainer) at
runtime to initialize the pod

» Pods generally have limitations on allocated
resources and max runtime

» Pods are stateless, meaning all data
uploaded or generated by the pod is deleted
when the pod terminates

O %

Image: https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fade

https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e
https://aws.plainenglish.io/kubernetes-deep-dive-job-and-cronjob-5ffed1c5fa4e

Key Kubernetes Concepts
ReplicaSet and Deployment

» ReplicaSet - its purpose is to maintain
a stable set of replica Pods running at
any given time. !

» Deployment - is a higher-level
concept that manages ReplicaSets
and provides declarative updates to
Pods along with a lot of other useful
features.!

1. https://kubernetes.io/

O # D# O%

It is recommended to use
Deployment instead of ReplicaSets

57

https://kubernetes.io/

Key Kubernetes Concepts
Jobs

» A Job creates one or more Pods and will continue to retry execution of
the Pods until a specified number of them successfully terminate.’

» A job has virtually access to unlimited resources and can run for
extended periods of time

» A job may consist of one pod or multiple pods working in parallel
» Deleting a job will automatically delete its corresponding pod

» A job can create a new pod(s) if any of its pod(s) is deleted or failed for
any reason.

» Similar to pods, jobs are stateless

1. https://kubernetes.io/ 58

https://kubernetes.io/

GPN

GREAT PLAINS NETWORK

Key Kubernetes Concepts
Persistent volume

» To maintain the data generated a persistent volume (storage) is needed

» A persistent volume is storage on the cluster that has been provisioned by an
administrator or dynamically provisioned using storage classes.
» There exists different classes of persistent volumes such as:
» cephfs
» Fibre Channel storage
» NFS storage

» There are different access modes:
» ReadWriteOnce
ReadOnlyMany

>
» ReadWriteMany
» ReadWriteOncePod

1. https://kubernetes.io/ 59

https://kubernetes.io/

GPN

GREAT PLAINS NETWORK

Key Kubernetes Concepts

Services Ueare
» Applications running within distinct pods I
communicate over the network using the unique IP Service

address assigned to each pod

» Each Pod has a unique IP address assigned at runtime,
which changes every time a Pod is restarted, making
reliable communication less simple

H B

Service

» Services enable communication between
applications running in pods within the cluster and _
with outside users if necessary Service

Service

» There are four type of services supported by K8s

» ClusterlP

» NodePort

» LoadBalancer

Service
IDIAIDG

» Ingress

60

Kubernetes usage

GPN

GREAT PLAINS NETWORK

Yet Another Markup Language (YAML)

<fServer>
<fServers>

<created>123456</created>
<status>active</status>

owner: John,
created: 123458,
status: active
}
J
i

XML JSON YAML
<Servers> { Servers:
<Server> Servers: [name: Serverl
<name>Serverl</name> { owner: lohn
<owner=>John</owner> name: Serverl, created: 123456

status: active

» YAML is a key-value pair file format, similar to JSON and XML

» Kubernetes operations are performed using YAML files, known as a Spec file

» Creating Persistent Storage

» Creating Pods
» Creating Jobs

» Deploying services

62

GPN

GREAT PLAINS NETWORK

Interfacing with Kubernetes:
KubeCTL

» With a published Docker image and prepared YAML Spec file, KubeCTL
enables interaction with Kubernetes:

kubectl [command] [TYPE] [NAME] [flags]

where:

» command: Specifies the operation that you want to perform on one or more resources, for
example create, get, describe, delete

» TYPE: Specifies the resource type, such as pod or job
» NAME: Specifies the name of the resource, or the path to a Spec file

» flags: Specifies optional flags, such as --server to specify the address and port of the API
server

https://kubernetes.io/docs/reference /kubectl/ 74

GREAT PLAINS NETV K

Interfacing with Kubernetes:
KubeCTL cheat sheet

» To create pod
kubectl create -f
kubectl apply -f
» To create job
kubectl create -f
kubectl apply -f

75

GREAT PLAINS NETV K

Interfacing with Kubernetes:
KubeCTL cheat sheet

» To check pod status
kubectl get
kubectl describe pod
» To check job status
kubectl get
kubectl describe job

kubectl

76

GPN

GREAT PLAINS NETWORK

Interfacing with Kubernetes:
KubeCTL cheat sheet

» Access Pod interactively
kubectl exec -it -- /bin/bash

» Copy data from Nautilus to local machine
kubectl cp pod-name:path/to/data local/path/

» Copy data to Nautilus from local machine
kubectl cp local/path/ pod-name:path/to/data

» Exit interactive Pod mode

Press ctrl+D

77

GREAT PLAINS NETV K

Interfacing with Kubernetes:
KubeCTL cheat sheet

» To delete pod
kubectl delete -f
Kubectl delete
» To delete job
kubectl delete -f
Kubectl delete

78

KubeCTL cheat sheet

» To create persistent volume

kubectl create -f
Kubectl apply -f

» To increase the size of persistent volume
kubectl apply -f

» To delete persistent volume
kubectl delete -f
kubectl delete

79

Part 3
National Research Platform
Nautilus Research Cluster

Introduction to Containers and Kubernetes

Mathew Keeler- Mizzou HPC
UnwerSIty nf Mlssoun

ttttttttttttttttttttttttttttttttt

GREAT PLAIN WORK

A quick note on Kubernetes Clusters, the NRP,
Commercial Clouds, and other K8s Clusters

» All commercial cloud » We are using the US National
providers support Research Platform solely for
Containers and Kubernetes demonstration and tutorial

» The concepts and examples PURBESES

in this tutorial may require » All Container and Kubernetes
minor modifications to concepts are portable to
adapt to other commercial clouds or other
environments research Kubernetes platforms

81

GPN

GREAT PLAINS NETWORK

NSF NRP Nautilus HyperCluster

» The NSF Nautilus HyperCluster is a
Kubernetes cluster with vast resources that
can be utilized for various research purposes:

» Prototyping research code

» S3 cloud storage for data and models
» Accelerated small-scale research compute

» Scaling research compute for large scale
experimentation

» Resources Available:
» CPU Cores: 9,769
» RAM: 167 TB
» NVIDIA GPUs: 1342

dcker

Nautilus Logo: https://portal.nrp-nautilus.io/ 82
Docker Logo: https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
Kubemetes Logo: https://commons.wikimedia.org/wiki/ File: Kubernetes logo without workmark.svg

https://portal.nrp-nautilus.io/
https://portal.nrp-nautilus.io/
https://portal.nrp-nautilus.io/
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://developers.redhat.com/blog/2014/05/15/practical-introduction-to-docker-containers
https://commons.wikimedia.org/wiki/File:Kubernetes_logo_without_workmark.svg

GPN

GREAT PLAINS NETWORK

Access to Nautilus

https://gp-engine.nrp-nautilus.io/

MU-managed ‘|:
Jupyter Hub

Disadvantges Limited customizability

Account and namespace

creation
Disadvantages

KubeCTL installation

Direct Access
with KubeCTL

86

https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/

N

GREAT PLAINS NETWORK

Access to Nautilus

» Follow the steps in getting started
» https://nrp.ai/documentation/userdocs/start/getting-started/

» Step1: Access Nautilus portal at nrp.ai
» Step 2: Click on login

Namespaces overview Resources Login

NRP Kubernetes portal

Here you can get an account in National Research Platform kubernetes portal by logging in with your university's

credentials and requesting access in [matrix]
Documentation: https://docs.nationalresearchplatform.org
You can easily join your node in our cluster - request instructions in [matrix] #general channel.

The National Research Platform currently has no storage that is suitable for HIPAA, PID, FISMA, FERPA, or protected
data of any kind. Users are not permitted to store such data on NRP machines.

87

GREAT PLAINS NETWORK A CCeSS O \| au] US

» Follow the steps in getting started
» https://ucsd-prp.gitlab.io/userdocs/start/get-access/

» Step 3: Select identity provider - Either your institution, ORCID, GitHub, or
Google

Cl CiLogon

us requests access o the following information. It you do not approve this request, do not proceed

« Your ClLogon user identifier
« Your name

« Your email address
« Your usermname and affillation from your identity provider

Select an Identity Provider

| University of Missouri System~ @ \
this selection

Femember this selecti

Leg On

88

https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/

GPN

GREAT PLAINS NETWORK

» Follow the steps in getting started
» https://ucsd-prp.qgitlab.io/userdocs/start/get-access/

» Step 4: Contact a Nautilus Namespace Admin

» Email needs to be visible

Namespaces overview Resources Namespace manager Storage Users Violations Perfsonartest Getconfig aomgc@mail.missouri.edu ™

» You need to be manually added to a namespace

» As admins, we can add you to existing namespace or create a namespace for you

89

https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/
https://ucsd-prp.gitlab.io/userdocs/start/get-access/

Hands on Kubernetes

GPN

GREAT PLAINS NETWORK

Hands on Kubernetes

» Demonstration of pod life cycle (without persistent volume)

» Creation, interactive access, simple operation, closing, and deletion
» Creation of persistent volume
» Demonstration of pod life cycle (with persistent volume)

» Creation, interactive access, simple operation, closing, and deletion

» Pod monitoring and debuging
» Demonstration of job life cycle

91

GPN

GREAT PLAINS NETWORK

MUAMLL/Nautilus

» NRP Portal:

B e PR riiles » JupyterHub Instance:

» Sample Kubernetes YAML File

» Wiki with detailed walkthroughs for:

\ » Tutorial Repository of Jupyter Project Pages, Code Samples,
» Getting Started YAML. etc

» Creating PVC

» Creating Pods

g dd T » Git Clone Command:

git clone https://github.com/MUAMLL/gp-engine-tutorials.git

Over a short break, we will ensure everyone has
cloned this Repo into their JupyterLab environment

https://nrp.ai/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://gp-engine.nrp-nautilus.io/
https://github.com/MUAMLL/gp-engine-tutorials
https://github.com/MUAMLL/gp-engine-tutorials
https://github.com/MUAMLL/gp-engine-tutorials
https://github.com/MUAMLL/gp-engine-tutorials
https://github.com/MUAMLL/gp-engine-tutorials

	Slide 1: GP-ENGINE – Migrating AI/ML workflows to Nautilus
	Slide 3: Learning Objectives
	Slide 4: Workshop Outline
	Slide 5: Part 1 Software Containerization with Docker
	Slide 6: Introduction
	Slide 7: The Problem: ???
	Slide 8: The Problem: Scalability & Reproducibility
	Slide 9: Example: Python Application for Image Processing
	Slide 10: Containerization
	Slide 11: Container Runtimes
	Slide 12: Docker
	Slide 13: Docker: Containers vs Virtual Machines
	Slide 14: Docker Concepts
	Slide 15: Key Docker Concepts
	Slide 16: Containers vs Container Images
	Slide 17: Dockerfiles
	Slide 18: Using Community Published Container Images
	Slide 19: Dockerfile: Common Commands
	Slide 20: Dockerfile: Common Commands
	Slide 21: Sample Dockerfile
	Slide 22: Distributing and Sharing Containers
	Slide 23: Docker Image Registries
	Slide 24: Revisiting our Example
	Slide 48: Do Now:
	Slide 49: Part 2 Container management with Kubernetes
	Slide 50: Subsection Outline
	Slide 51: Introduction to Kubernetes
	Slide 52: Kubernetes
	Slide 53: Kubernetes Master node
	Slide 54: Kubernetes Worker node
	Slide 55: Kubernetes concepts
	Slide 56: Key Kubernetes Concepts Pod
	Slide 57: Key Kubernetes Concepts ReplicaSet and Deployment
	Slide 58: Key Kubernetes Concepts Jobs
	Slide 59: Key Kubernetes Concepts Persistent volume
	Slide 60: Key Kubernetes Concepts Services
	Slide 61: Kubernetes usage
	Slide 62: Yet Another Markup Language (YAML)
	Slide 74: Interfacing with Kubernetes: KubeCTL
	Slide 75: Interfacing with Kubernetes: KubeCTL cheat sheet
	Slide 76: Interfacing with Kubernetes: KubeCTL cheat sheet
	Slide 77: Interfacing with Kubernetes: KubeCTL cheat sheet
	Slide 78: Interfacing with Kubernetes: KubeCTL cheat sheet
	Slide 79: Interfacing with Kubernetes: KubeCTL cheat sheet
	Slide 80: Part 3 National Research Platform Nautilus Research Cluster
	Slide 81: A quick note on Kubernetes Clusters, the NRP, Commercial Clouds, and other K8s Clusters
	Slide 82: NSF NRP Nautilus HyperCluster
	Slide 86: Access to Nautilus
	Slide 87: Access to Nautilus
	Slide 88: Access to Nautilus
	Slide 89: Access to Nautilus
	Slide 90: Hands on Kubernetes
	Slide 91: Hands on Kubernetes
	Slide 92: MUAMLL/Nautilus

