Setup Instructions

- Please ensure that you have:
 - An active HCC account and can connect to Swan
 - Login to swan-ood.unl.edu in your browser
 - Open the workshop website: https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
 - Open the logistics page: https://hcc.unl.edu/docs/Events/2025/mlai nov 2025/
 - Complete the NRP setup!!

If you **are done**, please put up green check or yellow sticky note.

If you **need help**, please put a red "X" or red sticky note.

Introduction to using Machine Learning and Al on HCC

Caughlin Bohn, Yi Liu, Adam Caprez, Natasha Pavloviki

HOLLAND COMPUTING CENTER hcc.unl.edu

Why use HCC for ML and AI?

- Al and ML workflows are increasingly popular and require significant storage and computational resources.
- HCC provides the computational power and storage capacity needed to train large models quickly and efficiently—essential for many AI and ML applications!

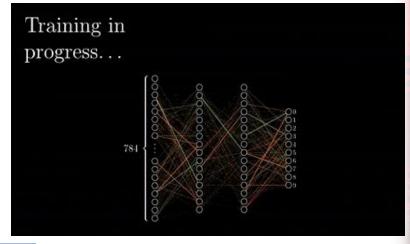
Why use HCC for ML and AI?

Example Scenario:

Model: ResNet-50 (image classification)

Dataset: CIFAR-10 (50 k images)

Training Setup: 90 epochs, batch size ~128



Configuration	Hardware	Approx. Training Time	
Personal Desktop	- Intel i7 CPU (4–8 cores)	8–10 hours	
	- 16 GB RAM		
	- No dedicated GPU		
HPC Single GPU Node	- 1x NVIDIA V100 (16–32 GB)	~1 hour (x10 faster!)	
	- Dual Xeon CPUs (56 cores)		
	- High-speed interconnect		
	- High-speed interconnect		

Introduction to HCC resources for ML and Al

Computing Resources

Overview of HCC clusters and GPUs Why GPUs?
- CPU vs. GPU for AI/ML workloads

Software Resources

How to request GPUs

GPU-based software Environment management tools Good practices for installing and managing dependencies

Data Storage Resources

HCC's available data storage resources Good practices for data storage and file management

Job Scheduling Principles & Good Practices

Swan

- HCC's newest and fastest resource
- •330+ node Linux cluster
- •56 cores per node
- •256+ GB RAM in most nodes
- •2 nodes with 2048 GB RAM
- •5200 TB shared storage
- 4TB scratch per node.

Red

- Used to store and analyze data from the Large Hadron Collider CMS experiment ~600 node Linux cluster
- ~10,000 cores
- 18 PB raw storage

Total Resources

almost 28k cores
~35 PetaBytes of storage
64 GB to 2 TB memory per node
GPUs: 200+ GPUs

NRDStor – Now Available

- Used to store experiment data for researchers in an easy-to-access format.
- 42 storage nodes
- 8.3 PB of storage

GPUs on Swan

Swan has a large variety of GPUs available for researchers! Swan contains 210 GPUs across 12 models.

- 4× A100 (80 GB)
- 14× A30 (24 GB)
- 8× L40S (48 GB)
- 3× H100 (96 GB)
- 4× V100 (16 GB)
- 62× V100S (32 GB)
- 24× T4 (16 GB)
- 7× RTX 5000 (16 GB)
- 2× RTX 8000 (48 GB)
- 24× A6000 (48 GB)
- 6× NVIDIA H200 NVL (141 GB)
- 52× NVIDIA L40S (48 GB)

To add GPU constraint, use SLURM command:

--constraint=gpu_v100

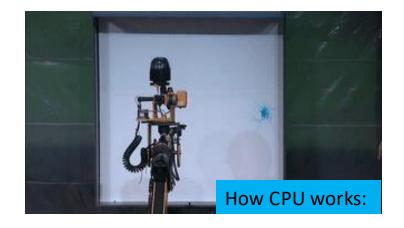
https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

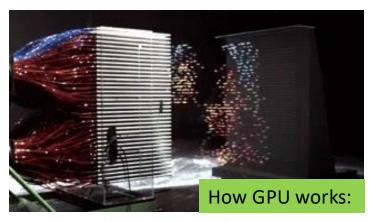
Why GPUs?

Parallelism - GPUs are designed for massive parallel workloads, ideal for tasks broken into smaller, independent operations.

Efficiency - GPUs perform the same operation on many data points simultaneously, making them highly efficient for computations like matrix multiplication, FFTs, etc.

High Throughput - With a large number of cores and high memory bandwidth, GPUs can process substantial data volumes at once, accelerating simulations and model training.





https://www.youtube.com/watch?v=-P28LKWTzrI

How to Request GPUs

SLURM options:

```
--gres=gpu:<count>
```

--gpus=<count>

Partitions dedicated for GPU use

Standard GPU partition: --partition=gpu

Software & Modules

CUDA toolkit, TensorFlow, PyTorch... available via module load

How to Submit a GPU Job

```
#!/bin/bash
#SBATCH --time=03:15:00
#SBATCH --mem-per-cpu=1024
#SBATCH --partition=gpu
#SBATCH --gres=gpu
#SBATCH --job-name=example
#SBATCH --error=/work/[groupname]/[username]/job.%J.err
#SBATCH --output=/work/[groupname]/[username]/job.%J.out
module load cuda
./cuda-app.exe
```

To submit a GPU-enabled job, two lines need added to your submit file.

The first is to select a GPUenabled partition such as 'gpu' or 'guest_gpu'.

The second is to request the general resource of 'gpu'.

Multiple GPUs can be requested using a value of 'gpu:#'. For example, 2 GPUs would be 'gpu:2'

Additional HCC GPU Resources

Using the Guest GPU Partition (guest_gpu)

- The **guest_gpu** partition is **pre-emptible**.
- Use **SLURM options**:

```
#SBATCH --partition=<mark>guest_gpu</mark>
#SBATCH --gres=gpu:<count>
```

• This is useful for exploratory work, testing, or workloads with flexible GPU needs.

Available Nodes in Each Partition

Partition	Owner	Node total	SLURM Specification
batch	Shared	104	#SBATCHpartition=batch
gpu	Shared	39	#SBATCHpartition=gpu
guest_gpu	Shared	26	#SBATCHpartition=guest_gpu
guest	Shared*	187	#SBATCHpartition=guest
labname	Lab Group		#SBATCHpartition=labname

For more detailed information see:

https://hcc.unl.edu/docs/submitting_jobs/partitions/swan_available_partitions/

GPU-Based Software

System-Wide Modules:

Load popular frameworks (e.g., TensorFlow, PyTorch) with module load ...

Custom Conda GPU Environments:

Lets you install specialized packages/frameworks in an isolated environment tailored to GPU usage.

Docker/Apptainer Images:

Use GPU-enabled Docker images via Apptainer (either HCC-provided or custom-built). Ensures consistency and reproducibility across different systems.

Monitoring GPU Jobs:

srun --jobid=<JOB_ID> --pty bash

Reference: https://hcc.unl.edu/docs/submitting jobs/monitoring gpu usage/

Keep an eye on resource utilization (e.g., GPU memory, GPU load) to optimize performance and troubleshoot issues.

Home vs Work vs NRDStor vs Attic

- Higher Storage Performance to Jobs
- Greater Ease of Access
- Diminishing Resiliency of Files

Attic

- Globus Access
- Fee based
- Not mounted on computational resources
- Off-site Backups

Home

- Medium Speed Access
- 20 GB per User
- Backed Up
- Not for direct job use

NRDStor

- Fast Access
- Accessible on laptop
- 50 TB per Group
- 5 Million files per Group
- Additional storage upon request
- Not backed up

Work

- Fastest Access
- No paid access
- 100 TB per Group
- 5 Million files per Group
- Not backed up
- Inactive files will be purged

Good Practices for Data Storage

Back up your data regularly!

- e.g. copy important files from \$WORK to \$NRDSTOR, your local machine, or external drives (use Globus or scp for efficient transfer)
 - Utilize cloud storage such as OneDrive provided by the University of Nebraska
 - Leverage HCC's Attic near-line archive service

Keep critical files in \$HOME

- o store vital small files (scripts, source code, etc.) in your \$HOME directory, which is automatically backed up daily
- (but avoid cluttering home with large data)

Use version control

 manage code and documents with Git (preserve revision history and off-site copies; UNL GitLab or GitHub can host your repositories)

Job Submission Principles and Good Practices

1. Use the worker nodes (SLURM)

- All heavy workloads must be submitted to the worker nodes using the SLURM job scheduler.
- Do not run workflows on login nodes—those are for editing/submitting only!

2. Resource Considerations

- Your code must explicitly support GPUs—requesting a GPU does not automatically provide performance gain.
- o If you want to use multiple worker nodes for a single job, your code needs to explicitly support
- CPU-based code will not run faster on GPUs; in fact, using a GPU for CPU-only code may slow things down.

3. Batch Job Submission

- o Prepare a job script (specify CPU cores, memory, runtime, GPU needs, etc.) and submit with sbatch.
- o SLURM will queue your job and dispatch it to a suitable worker node (or GPU node, if requested).

4. Interactive Jobs

- For debugging or exploratory work, launch an interactive SLURM session (e.g., srun) or use HCC's OnDemand web portal.
- Let's you run commands in real time within a temporary compute allocation.

Job Submission Principles and Good Practices

5. Efficient & Fair Scheduling

 SLURM dispatches jobs to worker nodes when resources are available, ensuring high utilization and fair sharing (so no single user dominates resources).

6. Job Monitoring & Management

- o Track jobs with squeue for queue status and sacct for job history. Cancel jobs using scancel.
- HCC OnDemand provides a GUI to view and manage active or completed jobs.