Setup Instructions

* Please ensure that you have:
* An active HCC account and can connect to Swan
* Login to swan-ood.unl.edu in your browser
* Open the workshop website: https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025

* Open the logistics page: https://hcc.unl.edu/docs/Events/2025/mlai nov 2025/
* Complete the NRP setup!!

,- ' If you are done, please put If you need help, please put
2 up green check or yellow x a red "X" or red sticky note.

sticky note. O O



https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/hcc-ai-and-ml-workshop-nov2025
https://hcc.unl.edu/docs/Events/2025/mlai_nov_2025/
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree
https://hcc.unl.edu/june-workshop-setup-3-week#weekthree

rvy e

L T N W

- . - @O

e -

Lid il

e 1

b Nﬂ-wlnﬂ

44— .n.nu
ks

4 .
md’ VW GIVe iR,

i
i M

-
Ll B

el -

ARLL U IR

P E PP

” -y »
\.\ﬁ\\\.\\‘.\.

S rrrisrzas

i N ) -




Why use HCC for ML and Al?

* Al and ML workflows are increasingly popular and require significant
storage and computational resources.

* HCC provides the computational power and storage capacity needed to train
large models quickly and efficiently—essential for many Al and ML
applications!




Training in

Example Scenario: DIOgress. . .

Model: ResNet-50 (image classification)
Dataset: CIFAR-10 (50 k images)
Training Setup: 90 epochs, batch size ~128

Configuration Hardware Approx. Training Time

Personal Desktop - Intel i7 CPU (4-8 cores) 8-10 hours
- 16 GB RAM
- No dedicated GPU

HPC Single GPU Node - 1x NVIDIA V100 (16-32GB) ~1 hour (x10 faster!)
- Dual Xeon CPUs (56 cores)

- High-speed interconnect




Introduction to HCC resources for ML and Al

Computing Resources
Overview of HCC clusters and GPUs

Why GPUs?
- CPU vs. GPU for Al/ML workloads
How to request GPUs

Software Resources
GPU-based software
Environment management tools
Good practices for installing and managing dependencies

Data Storage Resources
HCC’s available data storage resources
Good practices for data storage and file management

Job Scheduling Principles & Good Practices




Used to store and analyze data from
the Large Hadron Collider CMS
experiment

~600 node Linux cluster

~10,000 cores

18 PB raw storage

Total Resources

almost 28k cores
~35 PetaBytes of storage
64 GB to 2 TB memory per node
GPUs: 200+ GPUs

NRDStor — Now Available

Used to store experiment data for
researchers in an easy-to-access
format.

42 storage nodes [<>]

e 8.3 PB of storage




GPUs on Swan

Swan has a large variety of GPUs available for researchers! Swan contains 210 GPUs across 12 models.

4x A100 (80 GB)

14x A30 (24 GB)

8x L40S (48 GB)

3x H100 (96 GB)

4x V100 (16 GB)

62x V100S (32 GB)

24x T4 (16 GB)

7x RTX 5000 (16 GB)

2x RTX 8000 (48 GB)

24x A6000 (48 GB)

6x NVIDIA H200 NVL (141 GB)
52x NVIDIA L40S (48 GB)

To add GPU constraint, use SLURM command:

--constraint=gpu _v100
https://hcc.unl.edu/docs/submitting jobs/submitting gpu jobs/



https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

Why GPUs?
Parallelism - GPUs are designed for massive parallel workloads, ideal for tasks broken into smaller, independent
operations.

Efficiency - GPUs perform the same operation on many data points simultaneously, making them highly efficient for
computations like matrix multiplication, FFTs, etc.

High Throughput - With a large number of cores and high memory bandwidth, GPUs can process substantial data
volumes at once, accelerating simulations and model training.

How GPU works:

https://www.youtube.com/watch ?v=-P2 LKW Tzr|



https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI

How to Request GPUs
* SLURM options:

--gres=gpu:<count>
--gpus=<count>

 Partitions dedicated for GPU use
Standard GPU partition: --partition=gpu

e Software & Modules
CUDA toolkit, TensorFlow, PyTorch...
available via module load

https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/



https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

& ow to Submit a GPU Job

#!/bin/bash

#SBATCH --time=03:15:00
#SBATCH --mem-per-cpu=1024
#SBATCH --partition=gpu
#SBATCH --gres=gpu

#SBATCH --job-name=example

#SBATCH --error=/work/[groupname]/[username]/job.%J.err
#SBATCH --output=/work/[groupname]/[username]/job.%J.out

module load cuda

./cuda-app.exe

To submit a GPU-enabled job,
two lines need added to your
submit file.

The first is to select a GPU-
enabled partition such as
‘epu’ or ‘guest_gpu’.

The second is to request the
general resource of ‘gpu’.

Multiple GPUs can be
requested using a value of
‘epu:#’. For example, 2 GPUs
would be ‘gpu:2’

https://hcc.unl.edu/docs/submitting jobs/submitting gpu jobs/



https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

Additional HCC GPU Resources
Using the Guest GPU Partition (guest_gpu)

 The guest_gpu partition is pre-emptible.

* Use SLURM options:

#SBATCH --partition=guest gpu
#SBATCH --gres=gpu:<count>

* This is useful for exploratory work, testing, or workloads with
flexible GPU needs.

https://hcc.unl.edu/docs/submitting jobs/submitting gpu jobs/



https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

Available Nodes in Each Partition

Node SLURM Specification
total

batch Shared #SBATCH --partition=batch
gpu Shared #SBATCH --partition=gpu
guest_gpu Shared #SBATCH --partition=guest_gpu

guest Shared* #SBATCH --partition=guest

labname Lab Group #SBATCH --partition=labname

For more detailed information see:
https://hcc.unl.edu/docs/submitting jobs/partitions/swan available partitions/



https://hcc.unl.edu/docs/submitting_jobs/partitions/swan_available_partitions/

GPU-Based Software

Load popular frameworks (e.g., TensorFlow, PyTorch) with module load ..

Custom Conda GPU Environments:
Lets you install specialized packages/frameworks in an isolated environment tailored to GPU usage.

Docker/Apptainer Images:
Use GPU-enabled Docker images via Apptainer (either HCC-provided or custom-built).
Ensures consistency and reproducibility across different systems.

Monitoring GPU Jobs:
srun --jobid=<JOB_ID> --pty bash
Reference: https://hcc.unl.edu/docs/submitting jobs/monitoring gpu usage/

Keep an eye on resource utilization (e.g., GPU memory, GPU load) to optimize performance and troubleshoot
issues.



https://hcc.unl.edu/docs/submitting_jobs/monitoring_gpu_usage/

Home vs Work vs NRDStor vs Attic

- Higher Storage Performance to Jobs
- Greater Ease of Access
- Diminishing Resiliency of Files

—_—nmnnm———

—<

f
f '

- Globus Access Home
- Fee based - Medium Speed Access NRDStor
- Not mounted on - 20 GB per User - Fast Access Work
computational resources - Backed Up - Accessible on laptop - Fastest Access
- Off-site Backups - Not for direct job use - 50 TB per Group - No paid access
- 5 Million files per Group - 100 TB per Group
- Additional storage upon - 5 Million files per Group
request - Not backed up
- Not backed up - Inactive files will be purged




Good Pratis for ata Strage

Back up your data regularly!

o e.g. copy important files from $WORK to SNRDSTOR, your local machine, or external
drives (use Globus or scp for efficient transfer)
o Utilize cloud storage such as OneDrive provided by the University of Nebraska
o Leverage HCC’s Attic near-line archive service

Keep critical files in $HOME

o store vital small files (scripts, source code, etc.) in your $HOME directory, which is
automatically backed up daily
o (but avoid cluttering home with large data)

Use version control

o manage code and documents with Git (preserve revision history and off-site copies; UNL
GitLab or GitHub can host your repositories)




Job Submission Principles and Good Practices
1. Use the worker nodes (SLURM)

o All heavy workloads must be submitted to the worker nodes using the SLURM job scheduler.
o Do not run workflows on login nodes—those are for editing/submitting only!

2. Resource Considerations
o Your code must explicitly support GPUs—requesting a GPU does not automatically provide performance
gain.
o If you want to use multiple worker nodes for a single job, your code needs to explicitly support
o CPU-based code will not run faster on GPUs; in fact, using a GPU for CPU-only code may slow things down.

3. Batch Job Submission

o Prepare a job script (specify CPU cores, memory, runtime, GPU needs, etc.) and submit with sbatch.
o SLURM will queue your job and dispatch it to a suitable worker node (or GPU node, if requested).

4. Interactive Jobs
o For debugging or exploratory work, launch an interactive SLURM session (e.g., srun) or use HCC’s
OnDemand web portal.
o Let's you run commands in real time within a temporary compute allocation.




Job Submission Principles and Good Practices

5. Efficient & Fair Scheduling

o SLURM dispatches jobs to worker nodes when resources are available, ensuring high utilization
and fair sharing (so no single user dominates resources).

6. Job Monitoring & Management

o Track jobs with squeue for queue status and sacct for job history. Cancel jobs using scancel.
o HCC OnDemand provides a GUI to view and manage active or completed jobs.

https://hcc.unl.edu/docs/submitting_jobs/monitoring_gpu_usage/



https://hcc.unl.edu/docs/submitting_jobs/monitoring_gpu_usage/

	Slide 1: Setup Instructions
	Slide 2: Introduction to using Machine Learning and AI on HCC   Caughlin Bohn, Yi Liu, Adam Caprez, Natasha Pavlovikj
	Slide 3: Why use HCC for ML and AI?
	Slide 4: Why use HCC for ML and AI?
	Slide 5: Introduction to HCC resources for ML and AI
	Slide 6
	Slide 7: GPUs on Swan
	Slide 8: Why GPUs?
	Slide 9: How to Request GPUs
	Slide 10: How to Submit a GPU Job
	Slide 11: Additional HCC GPU Resources
	Slide 12: Available Nodes in Each Partition
	Slide 13: GPU-Based Software
	Slide 14: Home vs Work vs NRDStor vs Attic
	Slide 15: Good Practices for Data Storage
	Slide 16: Job Submission Principles and Good Practices
	Slide 17: Job Submission Principles and Good Practices

