
Hanying Chen, Yi Liu, Caughlin Bohn
Showmic Islam, Natasha Pavlovikj, Caughlin Bohn

Introduction to AI and ML using HCC
April 2025

Schedule
timestamp Session

12:00 ~ 12:15pm Setup and Support

12:15 ~ 1:00pm Introduction to HCC resources for ML and AI (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and AI workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

4:00 ~ 4:15pm Introduction to National Research Platform (NRP)

4:15 ~ 4:30pm Open Questions

Welcome!

• Available tools and software on HCC
• Requesting resources
• Monitoring model performance

Takeaways

In this session, we will introduce the resources available on
HCC’s Swan. You will learn:

• The available software on Swan for machine learning and AI

• Options to develop and run experiments using Swan

• Options to monitor and manage your experiments on Swan

Available Software

Your Science Code

Custom implementation:
dedicated but complicated

GPU acceleration ready
framework:
PyTorch, TensorFlow

Available Software

Your Science Code

GPU acceleration ready
framework:
PyTorch, TensorFlow

PyTorch:
Fast prototyping, Ease of developing

TensorFlow:
Production-ready deployment features

Overview

PyTorch

• HCC also offers
• Pure PyTorch/TensorFlow framework via Module
• Jupyter Lab kernels for development
• Options to create a custom Anaconda environment or

Docker image to support your research
• LM Studio and Ollama for running local Large

Language Models (LLMs)

TensorFlow

Pre-Installed Software

PyTorch

Multiple PyTorch versions are installed on Swan, including both
CPU and GPU versions

User-friendly web-based module search:
https://hcc.unl.edu/docs/applications/modules/available_software_for_swan/

Pre-Installed Software

Similarly, multiple CPU/GPU TensorFlow versions are installed
on Swan

TensorFlow

• Modules provide pure PyTorch/TensorFlow framework
• HCC offers

• Create a custom Anaconda environment
• https://hcc.unl.edu/docs/applications/user_software/using_ana

conda_package_manager/#creating-custom-gpu-anaconda-
environment

https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment

Pre-Installed Software
Command line access:
Load PyTorch/TensorFlow module

$ module load pytorch-gpu/py312/2.5

For example, to load the latest PyTorch GPU version:

$ module load tensorflow-gpu/py311/2.17

To load the latest TensorFlow GPU version:

Running in Command Line
Submitting an interactive job is useful to:
- Test your command before submitting SLURM job
- Debug your experiment

For example:

To request GPU resources

More details see:
https://hcc.unl.edu/docs/submitting_jobs/creating_an_interactive_job/

https://hcc.unl.edu/docs/submitting_jobs/creating_an_interactive_job/

Running with SLURM

For example:

Parameters to
request resources

Load necessary
modules

Command to run
your experiments

More resource requesting command see:
https://hcc.unl.edu/docs/submitting_jobs/

https://hcc.unl.edu/docs/submitting_jobs/

Running with SLURM
To request GPU resources, two additional parameters are required:

For example:

More resource requesting command see:
https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

Running with Jupyter Lab

Interactive coding environments on Open OnDemand:
- Run code part-by-part and visualize results instantly
- Develop your experiments

Open OnDemand access (https://swan-ood.unl.edu/):
Interactive Apps → Jupyter Lab
• Select preferred Jupyter Lab (Ver. 3.4 or 4.0)

https://swan-ood.unl.edu/
https://swan-ood.unl.edu/
https://swan-ood.unl.edu/

Command Line vs. Open OnDemand

Command line:
• Allow extended running time using SLURM (7 days maximum)
• Better for running experiments
• Submit your job to Swan using SLURM
 https://hcc.unl.edu/docs/submitting_jobs/

Jupyter Lab in Open OnDemand:
• GUI IDE
• Limited running time (8 hours maximum)
• Better for developing code
• Create interactive app using Open OnDemand

https://hcc.unl.edu/docs/open_ondemand/virtual_desktop_
and_interactive_apps/

https://hcc.unl.edu/docs/submitting_jobs/
https://hcc.unl.edu/docs/open_ondemand/virtual_desktop_and_interactive_apps/
https://hcc.unl.edu/docs/open_ondemand/virtual_desktop_and_interactive_apps/

Custom Environment

ML/AI is data-driven
• Additional package often required data processing and post-analysis
• For example:

• OpenCV – image processing
• NLTK – natural language processing
• SciPy – computational analysis

HCC provides support for custom environments using:
• Anaconda – easier environment build
• Docker – more consistency across machines

Custom Environment

Anaconda:
• Start by cloning one of the pre-installed kernel
• Tutorial:
https://hcc.unl.edu/docs/applications/user_software/using_anaconda
_package_manager/#creating-custom-gpu-anaconda-environment

Docker:
• Similarly, starting from a GPU-enabled Docker image on HCC’s

Docker hub (https://hub.docker.com/u/unlhcc/)
• Tutorial:
https://hcc.unl.edu/docs/applications/user_software/using_apptainer/

https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hub.docker.com/u/unlhcc/
https://hcc.unl.edu/docs/applications/user_software/using_apptainer/

Large Language Models
Large language models (LLMs) are large models that are
pre-trained on vast amounts of data. LLMs can be used on
different ways on HCC resources.

CLI Tool:
Ollama and Ollama-GPU

Open OnDemand Tool:
LM Studio

LM Studio

• Beginner-friendly, no-code setup with Graphical user interface (GUI)
• Ideal for:

• Local testing and prototyping
• GUI-based prompt engineering
• Lightweight experiments
• Non-developer use

Ollama
• Command-line interface (CLI) and flexible API for developers
• Ideal for:

• Scripting and chaining models in developer workflows
• Seamless integration into backend systems
• Fine-tuning and customizing LLM pipelines

More info: https://hcc.unl.edu/docs/applications/app_specific/using_llm/

https://hcc.unl.edu/docs/applications/app_specific/using_llm/

Monitor Resource Usage

Monitoring Resources Usage is important in optimizing machine
learning and deep learning models

• Hyper-parameter decision based on memory usage
• batch size – larger batch size needs more memory
• training precision – higher precision (32/16/8-bit) needs more

memory
• model architecture – deeper model (AlexNet vs. ResNet)

needs more memory

• Computing resource usage (%CPU/GPU)
• long GPU idle time – large data loading overhead

Monitor Resource Usage
For more tips for monitoring the running jobs see:

Monitoring CPU Usage:
https://hcc.unl.edu/docs/submitting_jobs/monitoring_jobs/

Monitoring GPU Usage:
https://hcc.unl.edu/docs/submitting_jobs/monitoring_gpu_usage/

https://hcc.unl.edu/docs/submitting_jobs/monitoring_jobs/
https://hcc.unl.edu/docs/submitting_jobs/monitoring_gpu_usage/

Monitor Model Performance
TensorBoard is useful to analyze the model performance during or
post training

• Two steps in general
• add logging code and write to file
• open a TensorBoard session to check

Monitor Model Performance

Add logging code and write to file

For example, write the model graph in PyTorch:

You can add metrics recording such as loss, accuracy, recall, etc. in
training loop, see more in:
https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.ht
ml

https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

Monitor Model Performance

Similarly, write the model graph in TensorFlow, for example:

Find more tutorials on logging models at:
https://www.tensorflow.org/tensorboard/get_started

https://www.tensorflow.org/tensorboard/get_started

Monitor Model Performance
Open an interactive TensorBoard session to check the logged
information
• Open OnDemand:

Interactive Apps → TensorBoard

Specify log file path

Setup for Hands on

In this session, we will use Jupyter Lab via Swan’s Open OnDemand
portal for hands-on practice.

1. Login to Swan’s Open OnDemand portal:
https://swan-ood.unl.edu/

2. Copy the practice notebook and data to your $WORK directory:
• using terminal:

▪ Select “Clusters” → “Swan Shell Access”

$ cd $WORK
$ git clone https://github.com/unlhcc/hcc-ai-ml-workshop-2025.git
$ ls hcc-ai-ml-workshop-2025

If you are done, please put up
your yellow sticky note.

If you need help, please put up
your red sticky note.

https://swan-ood.unl.edu/
https://swan-ood.unl.edu/
https://swan-ood.unl.edu/

3. Select “Interactive Apps” → “Jupyter Lab”
4. Navigate to the "hcc-ai-ml-workshop-2025" folder in left-hand sidebar
5. Open the “00_prepare_datasets.ipynb" notebook and run all cells

Note that, since this is an

intermediate workshop, we

assume that participants:

• Have basic knowledge of

Python, so we will not explain

Python code.

• Are familiar with using Swan,

including terminal access and
interactive apps.

Parameter Value

Jupyter Lab version 4.0

Working Directory /work/groupname/username

Number of cores 8

Running time in hours 3

Requested RAM in GBs 32

Partition selection guest_gpu

Reservation Located on the back of your name tag

GRES gpu

Job Constraints ---Leave BLANK---

Open OnDemand Settings

Setup for Hands on

Jupyter Lab Kernels

Open OnDemand access (https://swan-ood.unl.edu/):
Interactive Apps → Jupyter Lab
• Select preferred Jupyter Lab (Ver. 3.4 or 4.0)

https://swan-ood.unl.edu/
https://swan-ood.unl.edu/
https://swan-ood.unl.edu/

Jupyter Lab Kernels
Parameters to request resources:
• Jupyter Lab version
• Path to working directory

Jupyter Lab Kernels
Parameters to request resources: CPU related resources

Jupyter Lab Kernels
Parameters to request resources: GPU related resources
• Type “guest_gpu” in Partition selection and GRES to request GPU
• “jupyter” or “batch” for CPU resources

Jupyter Lab Kernels
Parameters to request resources: other parameters

Located on the back of your name tag

Jupyter Lab Kernels

Open OnDemand access:
• Wait for your Jupyter Lab session to start

3. Select “Interactive Apps” → “Jupyter Lab”
4. Navigate to the "hcc-ai-ml-workshop-2025" folder in left-hand sidebar
5. Open the "00_prepare_datasets.ipynb" notebook and run all cells

Note that, since this is an

intermediate workshop, we

assume that participants:

• Have basic knowledge of

Python, so we will not explain

Python code.

• Are familiar with using Swan,

including terminal access and
interactive apps.

Parameter Value

Jupyter Lab version 4.0

Working Directory /work/groupname/username

Number of cores 8

Running time in hours 3

Requested RAM in GBs 32

Partition selection guest_gpu

Reservation Located on the back of your name tag

GRES gpu

Job Constraints ---Leave BLANK---

Open OnDemand Settings

Setup for Hands on

Schedule
timestamp Session

12:00 ~ 12:15pm Setup and Support

12:15 ~ 1:00pm Introduction to HCC resources for ML and AI (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and AI workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

4:00 ~ 4:15pm Introduction to National Research Platform (NRP)

4:15 ~ 4:30pm Open Questions

	Slide 1
	Slide 2: Schedule
	Slide 3: Welcome!
	Slide 4: Takeaways
	Slide 5: Available Software
	Slide 6: Available Software
	Slide 7: Overview
	Slide 8: Pre-Installed Software
	Slide 9: Pre-Installed Software
	Slide 10: Pre-Installed Software
	Slide 11: Running in Command Line
	Slide 12: Running with SLURM
	Slide 13: Running with SLURM
	Slide 14: Running with Jupyter Lab
	Slide 15: Command Line vs. Open OnDemand
	Slide 16: Custom Environment
	Slide 17: Custom Environment
	Slide 18: Large Language Models
	Slide 19: LM Studio
	Slide 20: Ollama
	Slide 21: Monitor Resource Usage
	Slide 22: Monitor Resource Usage
	Slide 23: Monitor Model Performance
	Slide 24: Monitor Model Performance
	Slide 25: Monitor Model Performance
	Slide 26: Monitor Model Performance
	Slide 27: Setup for Hands on
	Slide 28: Setup for Hands on
	Slide 29: Jupyter Lab Kernels
	Slide 30: Jupyter Lab Kernels
	Slide 31: Jupyter Lab Kernels
	Slide 32: Jupyter Lab Kernels
	Slide 33: Jupyter Lab Kernels
	Slide 34: Jupyter Lab Kernels
	Slide 35: Setup for Hands on
	Slide 36: Schedule

