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Schedule
¢ 12:00~ 12:15pm  Setup and Support
] 12:15~1:00pm  |ntroduction to HCC resources for ML and Al (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and Al workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

. 4:00~ 4:15pm Introduction to National Research Platform (NRP)
g 4:1574:30pm Open Questions




Welcomel

* Available tools and software on HCC
* Requesting resources
* Monitoring model performance

How can the Holland Computing Center help you?

_

[ —
Computing Consulting Training




Ta awys

In this session, we will introduce the resources available on
HCC’s Swan. You will learn:

* The available software on Swan for machine learning and Al
e Options to develop and run experiments using Swan

e Options to monitor and manage your experiments on Swan




AvaiIaI Sotwa e

Your Science Code

GPU acceleration ready
framework:

\ .
PyTorch, TensorFlow e ( ) Iy r\

v 4

CUDA Runtime
Custom implementation: /

dedicated but complicated s

CUDA Driver

L, Application

|
v




AvaiIaI Sotwa e

Your Science Code

L, Application

GPU acceleration ready
framework:

\ .
PyTorch, TensorFlow e ( ) Iy r\

v 4

CUDA Runtime

PyTorch:
Fast prototyping, Ease of developing

¥

CUDA Driver

TensorFlow:
Production-ready deployment features

|
v




Overview

 HCC also offers
* Pure PyTorch/TensorFlow framework via Module
* Jupyter Lab kernels for development
e Optionsto create a custom Anaconda environment or
Docker image to support your research
LM Studio and Ollama for running local Large
Language Models (LLMs)

() N
PyTorch‘ |~ TensorFlow a LM Studio {Z,‘} Ollama
.A. Al ma=
wie | ) ANACONDA. @ docker:




Pre-Installed Software

( ) PyTorch

Multiple PyTorch versions are installed on Swan, including both

CPU and GPU versions

To find other possible module matches execute:

$ module -r spider '.*pytorch.*’

User-friendly web-based module search:
https://hcc.unl.edu/docs/applications/modules/available_software_for_swan/

Name Version Maodule Name Prerequisites Type

pytorch

pytorch-gpu 2.5.1 pytorch-gpu/py310/2.5

ovtarch-apu 2.5.1 ovtorch-apu/ov311/2.5

Domain

application  deep learning

aoolication  deep learning

Description

Tensars and Dynamic neural networks in

Python with strang GPU acceleration

Tensars and Dynamic neural networks in




Pre-Installed Software

=
li TensorFlow

Similarly, multiple CPU/GPU TensorFlow versions are installed
on Swan

To find other possible module matches execute:

n

$ module -r spider '.*tensorflow.*"

* Modules provide pure PyTorch/TensorFlow framework
 HCC offers
 Create a custom Anaconda environment
* https://hcc.unl.edu/docs/applications/user software/using ana
conda_package manager/#creating-custom-gpu-anaconda-
environment



https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment
https://hcc.unl.edu/docs/applications/user_software/using_anaconda_package_manager/#creating-custom-gpu-anaconda-environment

Pre-Installed Software

Command line access:
Load PyTorch/TensorFlow module

For example, to load the latest PyTorch GPU version:

S module load pytorch-gpu/py312/2.5

To load the latest TensorFlow GPU version:

S module load tensorflow-gpu/py311/2.17

[yliu95@loginl.swan ~]$%| module -r spider '.*pytorch.*'

Description:
PyTorch i1s an optimized tensor library for deep learning using GPUs
and CPUs.

versions:
pytorch/py27/0.4
pytorch/py27/1.2
pytorch/py35/0.4
pytorch/py36/0.4

.




Running inComrnand Line

Submitting an interactive job is useful to:
- Test your command before submitting SLURM job
- Debug your experiment

For example:

% srun --nodes=1 --ntasks-per-node=4 --mem-per-cpu= --time=-:80:80 --pty
$SHELL

To request GPU resources

% srun --nodes=1 --ntasks-per-node=4 --mem-per-cpu= --time=-:08:088
--partition=gpu --gres=gpu --pty $SHELL

More details see:
https://hcc.unl.edu/docs/submitting jobs/creating an interactive job/
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Running with SLURM

For example:

Ed

#!/bin/bash
#SBATCH --time=83:15:08 # Run time in hh:mm:ss
#SBATCH --mem-per-cpu=1824 # Maximum memory required per CPU (in megabytes)

#SBATCH --job-name=hello-world
#SBATCH --error=/work/[groupname]/[username]/job.%].err
#SBATCH --output=/work/[groupname]/[username]/job.%].out

module load exampleﬁtest}—gf

| Parameters to

request resources

hostname
sleep GO

‘—_———————_——________“““-———>

More resource requesting command see:
https://hcc.unl.edu/docs/submitting jobs/

| Load necessary

modules

Command to run
your experiments



https://hcc.unl.edu/docs/submitting_jobs/

Runningwith SLURM

To request GPU resources, two additional parameters are required:

--partition=gpu --gres=gpu

For example:

#! /bin/bash

#SBATCH --time=03:15:08
#5BATCH --mem-per-cpu=1824
#SBATCH --job-name=cuda
#5BATCH --partition=gpu
#SBATCH --gres=gpu
FSBATCH —-error=/work/] groupname]/[username]/job.%].err
#SBATCH --output=/work/[groupname]/[username]/job.%].out

module load cuda
.fcuda-app.exe

More resource requesting command see:
https://hcc.unl.edu/docs/submitting jobs/submitting gpu jobs/
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Running with Jupytr Lab

Interactive coding environments on Open OnDemand:
- Run code part-by-part and visualize results instantly
- Develop your experiments

Open OnDemand access (https://swan-ood.unl.edu/):
Interactive Apps =2 Jupyter Lab
» Select preferred Jupyter Lab (Ver. 3.4 or 4.0)

Jupyter Lab version:
w1.0.0_16_9g3837770

This app will launch a Jupyter Lab server using Python.
Jupyter Lab version

4.0

This defines the version of Jupyter Lab you want to load.

Working Directory
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Command Line vs. Open OnDemand

Command line:

e Allow extended running time using SLURM (7 days maximum)

e Better for running experiments

e Submit your job to Swan using SLURM
https://hcc.unl.edu/docs/submitting jobs/

Jupyter Lab in Open OnDemand:

« GUIIDE

* Limited running time (8 hours maximum)

* Better for developing code

e Create interactive app using Open OnDemand
https://hcc.unl.edu/docs/open ondemand/virtual desktop
and interactive apps/
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Custom Environment

ML/Al is data-driven
* Additional package often required data processing and post-analysis
* For example:

* OpenCV —image processing

 NLTK — natural language processing

* SciPy — computational analysis

HCC provides support for custom environments using:
* Anaconda — easier environment build
* Docker — more consistency across machines




Custom Environment

Anaconda:

e Start by cloning one of the pre-installed kernel

e Tutorial:

https://hcc.unl.edu/docs/applications/user software/using anaconda
package manager/#creating-custom-gpu-anaconda-environment

Docker:

e Similarly, starting from a GPU-enabled Docker image on HCC’s
Docker hub (https://hub.docker.com/u/unlhcc/)

e Tutorial:

https://hcc.unl.edu/docs/applications/user software/using apptainer/
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Large Lanuage Models

Large language models (LLMs) are large models that are
pre-trained on vast amounts of data. LLMs can be used on

different ways on HCC resources.

CLI Tool: Open OnDemand Tool:
Ollama and Ollama-GPU LM Studio

Version Module Name LM StUdiO: Swan

2! This app will launch the LM Studio GUI. You will be
able to interact with the LM Studio GUI through a VNC

ollama

Dllama-gpu 0.11.4 G||al‘|‘|a-gpu;'D.’|’| Se5510n.

ollama 0.11.4 ollama/0.11 LM Studio version

0.3.23 v

This defines the version of LM 5Studio you want to load.




LM tudio

Beginner-friendly, no-code setup with Graphical user interface (GUI)
|deal for:
* Local testing and prototyping
GUI-based prompt engineering
Lightweight experiments
Non-developer use

< Thanksgiving Turkey Recipe

herb sprigs, and tuck under the skin for extra pockets of flavor.
Quick Timeline (for a 16-1b turkey)

Time Before
3 Action
Serving




Ollama

e Command-line interface (CLI) and flexible API for developers
* Ideal for:

e Scripting and chaining models in developer workflows

* Seamless integration into backend systems

* Fine-tuning and customizing LLM pipelines

to_actions(self, instruction: str) -»> Tuple[Dict[str, Any], str, ChatResponse]:
t configurations]”
schema_hint = (

"[Prompt instructions]™

)

tions: {schema_hint}\n\n"
{instruction}\nin"

More info: https://hcc.unl.edu/docs/applications/app specific/using [Im/
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Monitor Resource Usage

Monitoring Resources Usage is important in optimizing machine
learning and deep learning models

Hyper-parameter decision based on memory usage
batch size — larger batch size needs more memory
training precision — higher precision (32/16/8-bit) needs more
memory

model architecture — deeper model (AlexNet vs. ResNet)
needs more memory

Computing resource usage (%CPU/GPU)
* long GPU idle time — large data loading overhead




Monitor Resource Usage

For more tips for monitoring the running jobs see:

Monitoring CPU Usage:
https://hcc.unl.edu/docs/submitting jobs/monitoring jobs/

Monitoring GPU Usage:
https://hcc.unl.edu/docs/submitting jobs/monitoring gpu usage/

top - 14:22:31 up 7 days, 21:16, 0O users, Lload average: 1.85, 2.04, 1.64
Tasks: 812 total, 3 running, 809 sleeping, 0 stopped, @ zombie

%Cpu(s): 8.1 us, 1.0 sy, 0.0 ni, 89.9 id, ©.8 wa, ©.1 hi, 0.1 si, 0.0 st
MiB Mem : 256738.5 total, 247767.9 free, 4959.9 used, 1010.8 buff/cache

MiB Swap: 0.0 total, 0.0 free, 9.0 used. 250108.0 avail Mem

PID USER VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1736758 hccdemo 5940976 1.1g 191832 S 135.9 0.4 0:04.57 MATLAB
1736757 hccdemo 5938428 1.1g 192432 S 135.2 0.4 0:04.54 MATLAB
1736756 hccdemo 6004472 1.1g 192460 S 134.9 0.4 0:04.53 MATLAB

c2420.swan.hcc.unl.edu:

NVIDIA-SMI 550.107.02 Driver version: .107.02 CUDA versi
|=====—— oo mm—mmmm e Fommmmmm—mmmmm +
Persistence-M | Bus-Id Disp.A | volatile uncorr.
Pwr:Usage/Cap GPU-Uti1l Compute M.
MIG M.

00000000:5E:00.0 off
380MiB / 32768MiB

Tesla v100-PCIE-32GB
PO

00000000:D8:00.0 off
1094miB / 32768MiB

Tesla v100-PCIE-32GB
51c PO pefault |

N/A |

—_——— ——— e ——
—— e —
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Monitor Model Performance

TensorBoard is useful to analyze the model performance during or
post training

 Two steps in general
* add logging code and write to file
* open a TensorBoard session to check

TensorBoard TIMESERIES SCALARS IMAGES GRAPHS DISTRIBUTIONS  HISTOGRAMS IMACTIVE - {} [ + I

Filtif runs (negex) Filtisd 105 (regix) Al Scaly lemanpe Higbogiam Settings:
&

B fun X pinned Settings *

& 202%02'}3- i cards for & quick view and companison GENERMAL
1471371 Fitrain

20220808-
14131 Tivaldation epoch_accuracy

20220B08-

1413717/ datas1 epoch_accuracy

20220808
141371 Fidatas2




Monitor Model Performance

Add logging code and write to file

For example, write the model graph in PyTorch:

Python

from torch.utils.tensorboard import SummaryWriter
writer = Summarylriter()

writer.add graph{model, dummy input)

You can add metrics recording such as loss, accuracy, recall, etc. in
training loop, see more in:
https://pytorch.org/docs/stable/tensorboard.html

https://pytorch.org/tutorials/intermediate/tensorboard tutorial.ht
ml
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Monitor Model Performance

Similarly, write the model graph in TensorFlow, for example:

Python 7 ® O

writer = tf.summary.create file writer(log dir)

# Trace and export the graph
tf.summary.trace_on(graph=True, profiler=False)
forward pass({sample input)
with writer.as default():
tf.summary.trace export(
name="model_graph”,
step=0,
profiler outdir=log dir)

Find more tutorials on logging models at:
https://www.tensorflow.org/tensorboard/get started
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Monitor Model Performance

Open an interactive TensorBoard session to check the logged
information
* Open OnDemand:

Interactive Apps =2 TensorBoard

TensorBoard: Swan version:
vv1.0.0_13_g6ed6278

This app will launch TensorBoard, TensorFlow's Visualization
Toolkit.

Additional modules (optional)

Space separated list of additional modules to load (eg.
tensorflow/py38/2.4)

Full list for Crane or Rhino

Tensorboard logdir

Specify log file path

—

Select the directory that contains data to visualize; defaults to
$HOME.

Select Path




etu fr ads on

In this session, we will use Jupyter Lab via Swan’s Open OnDemand
portal for hands-on practice.

1. Login to Swan’s Open OnDemand portal:
https://swan-ood.unl.edu/
2. Copy the practice notebook and data to your SWORK directory:
* using terminal:

= Select “Clusters” = “Swan Shell Access”

S cd SWORK

S git clone https://github.com/unlhcc/hcc-ai-ml-workshop-2025.git
S Is hcec-ai-ml-workshop-2025

If you are donfe, please put up - If you need help, please put up
your yellow sticky note. your red sticky note.
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Setup for Hands on

3. Select “Interactive Apps” =2 “Jupyter Lab”
4. Navigate to the "hcc-ai-ml-workshop-2025" folder in left-hand sidebar
5. Open the “00_prepare_datasets.ipynb" notebook and run all cells

Open OnDemand Settings

Parameter Value
40 Note that, since this is an

intermediate workshop, we

assume that participants:

« Have basic knowledge of
Python, so we will not explain
Python code.

 Are familiar with using Swan,

Reservation Located on the back of your name tag iﬂC'Udiﬂg terminal access and

orE it interactive apps.
Job Constraints ---Leave BLANK---

Jupyter Lab version

Working Directory /work/groupname/username

Number of cores 8

Running time in hours 3

Requested RAM in GBs 32

Partition selection guest_gpu




JupyterLab Kernels

Open OnDemand access (https://swan-ood.unl.edu/):
Interactive Apps =2 Jupyter Lab
e Select preferred Jupyter Lab (Ver. 3.4 or 4.0)

Jupyter Lab version:
vw1.0.0_16_g3837770

This app will launch a Jupyter Lab server using Python.

Jupyter Lab version

4.0

This defines the version of Jupyter Lab you want to load.

Working Directory
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Jupyter Lab Kernels

Parameters to request resources:
* Jupyter Lab version
* Path to working directory

Jupyter Lab version

4.0
This defines the version of Jupyter Lab you want to load.
Working Directory

/work/<groupname>/<username>

Select your Notebook directory; defaults to $HOME

Select Path




Jupyter Lab Kernels

Parameters to request resources: CPU related resources

Number of cores

4
Number of cores requested on a node (min 1, max 16)
Running time in hours

1 =
Maximum runtime in hours of Jupyter Lab server (min 1, max 8)

Requested RAM in GBs

16

Maximum memory requested for Jupyter Lab server (min 2GB,
max 60GBs)




Jupyter Lab Kernels

Parameters to request resources: GPU related resources
* Type “guest_gpu” in Partition selection and GRES to request GPU
* “jupyter” or “batch” for CPU resources

Partition selection

jupyter
* Jjupyter - Resources reserved for Jupyter notebooks.

®* batch - The general batch queue.

* other partitions may be specified if your account has
access

GRES

This field is used primarily for gpu submissions. You must
specify a gres of at least gpu when using the GPU partition.

Other possible values may be found here.




Jupyter Lab Kernels

Parameters to request resources: other parameters

Reservation

Located on the back of your name tag

Submit to a specific reservation if your account has access.

Job Constraints

Additional constraints for the job. Primarily used for specifying
a GPU type or node type.




Jupyter Lab Kernels

Open OnDemand access:
* Wait for your Jupyter Lab session to start

Jupyter Lab (9470413) Queued

Created at: 2025-02-24 12:49:41 CST

Time Requested: 1 hour

Session ID: f40577¢c3-5a1b-401b-bb24-63a0d618ad2a

Please be patient as your job currently sits in queue. The wait time depends on the

number of cores as well as time requested.




Setup for Hands on

3. Select “Interactive Apps” =2 “Jupyter Lab”
4. Navigate to the "hcc-ai-ml-workshop-2025" folder in left-hand sidebar
5. Open the "00_prepare_datasets.ipynb" notebook and run all cells

Open OnDemand Settings

Parameter Value
40 Note that, since this is an

intermediate workshop, we

assume that participants:

« Have basic knowledge of
Python, so we will not explain
Python code.

 Are familiar with using Swan,

Reservation Located on the back of your name tag iﬂC'Udiﬂg terminal access and

orE it interactive apps.
Job Constraints ---Leave BLANK---

Jupyter Lab version

Working Directory /work/groupname/username

Number of cores 8

Running time in hours 3

Requested RAM in GBs 32

Partition selection guest_gpu
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