

hcc.unl.edu

Hanying Chen, Yi Liu, Caughlin Bohn

Showmic Islam, Natasha Pavlovikj, Caughlin Bohn

Introduction to AI and ML using HCC

April 2025

Schedule

timestamp	Session
12:00 ~ 12:15pm	Setup and Support
12:15 ~ 1:00pm	Introduction to HCC resources for ML and AI (45 Min)
1:00 ~ 1:15pm	Short Break (15 Min)
1:15 ~ 2:00pm	ML and AI workflows (45 Min)
2:00 ~ 2:10pm	Short Break (10 Min)
2:10 ~ 2:50pm	Introduction to PyTorch (40 Min)
2:50 ~ 3:00pm	Break (10 Min)
3:00 ~ 3:50pm	Introduction to PyTorch cont. (50 Min)
3:50 ~ 4:00pm	Break (10 Min)
4:00 ~ 4:15pm	Introduction to National Research Platform (NRP)
4:15 ~ 4:30pm	Open Questions

Welcome!

- Hands-on Al practice on HCC
 - Computer Vision image classification using CNN
 - Natural Language Processing (NLP) text classification using BERT

How can the Holland Computing Center help you?

Data

Setup

In this session, we will use Jupyter Lab via Swan's Open OnDemand portal for hands-on practice.

- At the end of the last session, we finished setting up the environment
- Now, please verify whether the data has been successfully downloaded in the "00_prepare_datasets.ipynb" notebook
 - You should see output confirming that the datasets are downloaded

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Takeaways

In this session, you will:

- Practice a computer vision task: Classify images using a Convolutional Neural Network (CNN)
- Explore the AI/ML development workflow from design, data preparation to model training and evaluation
- Learn how to build and train a CNN using PyTorch step-by-step
- Hands-on practice case study on CIFAR-10 image classification

Recap: Command Line vs. Open OnDemand

Command line:

- Allow extended running time using SLURM (7 days maximum)
- Better for running experiments

Jupyter Lab in Open OnDemand:

- GUI interface
- Limited running time (8 hours maximum)
- Better for developing code

In this session, we will use Jupyter Lab

- Interactive environment ideal for exploring PyTorch models step-by-step
- We can write, run, and visualize the PyTorch code

Development Workflow

Depending on the task, purpose, and data, the workflow has five steps in general:

- 1. Design: define objectives of the task
- 2. Data preparation: collect, label, and pre-process data
- 3. Model selection: select AI/ML algorithms based on the task
- 4. Training explore effective hyper-parameters train the model on the data
- 5. Evaluation test the model on **unseen** data to evaluate the model's ability on generalization

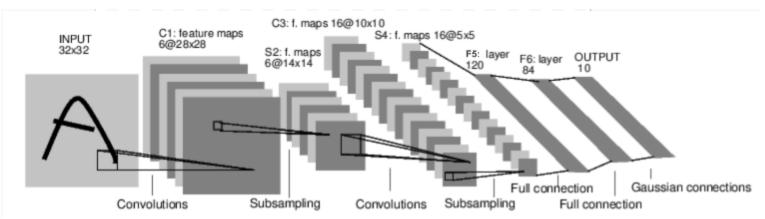
Hands-On Practice 1

Overview:

Task: Categorize natural scene images

Data: CIFAR10*

 We will build a convolutional neural network (CNN) in PyTorch to classify images in the CIFAR10 dataset into 10 different classes



https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

^{*} Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009): 7.

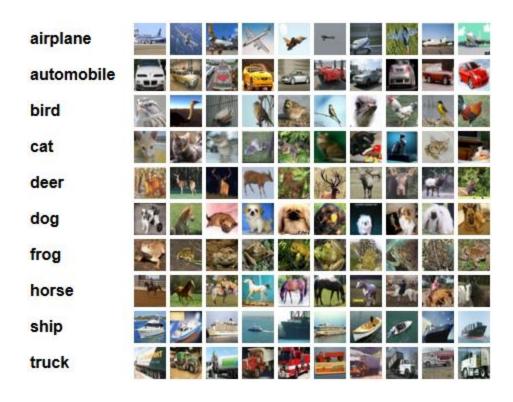
Design

Ways to identify design based on the purpose and task:

- We are looking at an image categorization task
- Models have different advantages at specific task types:
 - Categorization Convolutional Neural Network (CNN)
 - Segmentation U-Net
 - Generation Diffusion model
- Or we can look for the state-of-the-art design in the similar tasks
 - CIFAR10 is commonly used to benchmark CNNs

CIFAR10

Let's take a look into CIFAR10 in Jupyter Lab



If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Data preparation can involve different parts, for example:

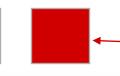
- Pre-processing: Clean data removing noise, eliminating duplicates, and ensuring proper labeling
- Data Balancing: Even class distribution to prevent model bias
- Data Normalization: Rescale values
 (e.g., mapping pixel values from 0-255 to a range of -1 to 1)
- **Data Splitting**: Divide the dataset into training and validation sets for model training, and a separate test set for evaluation
- Data Augmentation: Enrich dataset variety

Data preparation can involve different parts, for example:

- Pre-processing: Clean data removing noise, eliminating duplicates, and ensuring proper labeling
- Data Balancing: Even class distribution to prevent model bias
- Data Normalization: Rescale values
 (e.g., mapping pixel values from 0-255 to a range of -1 to 1)
- Data Splitting: Divide the dataset into training and validation sets for model training, and a separate test set for evaluation
- Data Augmentation: Enrich dataset variety

Let's prepare data and its data loader in Jupyter Lab

If you **are done**, please put up your yellow sticky note.



If you **need help**, please put up your red sticky note.

Model Selection

General ideas:

- Current state-of-the-art: e.g., "paper with code" https://paperswithcode.com/sota
- Hardware constraints: check available GPUs on HCC <u>https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/</u>
- Data sample size: more complex model more training data needed
- Existing similar projects: use models known effective to similar tasks
- Hybrid or custom approach: develop a new model by combining the above

Model Selection

For practice purposes, let's explore building our own models using PyTorch

```
class CustomCNN(nn.Module):
    def init (self):
        super(CustomCNN, self). init ()
        self.layer1 = self.ConvModule(in features=3, out features=64)
                                                                            #16.16
        self.layer2 = self.ConvModule(in_features=64, out_features=128)
                                                                            #8,8
        self.layer3 = self.ConvModule(in_features=128, out_features=256)
                                                                            #4,4
        self.layer4 = self.ConvModule(in_features=256, out_features=512)
        self.classifier = nn.Sequential(nn.Flatten(),
                                        nn.Linear(2*2*512, 1024),
                                        nn.ReLU(),
                                        nn.Linear(1024, 512),
                                        nn.ReLU(),
                                        nn.Linear(512,10),
                                        nn.Softmax())
   def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.classifier(x)
        return x
   def ConvModule(self, in features, out features):
        return nn.Sequential(nn.Conv2d(in_channels=in_features,
                                       out channels=out features,
                                       kernel_size=3, padding=1),
                             nn.BatchNorm2d(out_features),
                             nn.ReLU(),
                             nn.MaxPool2d(2,2))
```

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Training

Difference among training and testing sets

Set	Purpose	Usage	Typical Size
Training Set	Used for model learning; model parameters are adjusted based on this data.	Directly used during the training phase.	Largest portion (~60-80%)
Testing Set	Used to evaluate the final model performance objectively.	Only used after training is fully completed.	Moderate portion (~10-20%)

Training

In general:

Models learn from the **training set**. We can tune the hyperparameters of the model to help models learn effectively.

Let's see

- how different hyperparameters affect the model's performance
- how to use GPU acceleration

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Evaluation

We evaluate the effectiveness of the model using **the testing set**. It's <u>crucial</u> that the testing set **remains completely unseen** throughout the training and validation phases to avoid data contamination for accurate evaluation.

Let's evaluate the model we just trained

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

More Tips

- Testing performance are often lower than the training performance (e.g., accuracy), why?
- Overfitting can reduce the model's ability to generalize effectively to new, unseen data.
- Tuning or performing a grid search for optimal model selection and hyperparameter configurations is often necessary to achieve the best model performance.

Summary

In this session:

- we practiced image classification using a custom CNN model built with PyTorch.
- we used GPU resources provided by HCC to accelerate the training process.

In our next session, we'll explore text classification using a pre-trained BERT model.

Schedule

timestamp	Session
12:00 ~ 12:15pm	Setup and Support
12:15 ~ 1:00pm	Introduction to HCC resources for ML and AI (45 Min)
1:00 ~ 1:15pm	Short Break (15 Min)
1:15 ~ 2:00pm	ML and AI workflows (45 Min)
2:00 ~ 2:10pm	Short Break (10 Min)
2:10 ~ 2:50pm	Introduction to PyTorch (40 Min)
2:50 ~ 3:00pm	Break (10 Min)
3:00 ~ 3:50pm	Introduction to PyTorch cont. (50 Min)
3:50 ~ 4:00pm	Break (10 Min)
4:00 ~ 4:15pm	Introduction to National Research Platform (NRP)
4:15 ~ 4:30pm	Open Questions

Schedule

timestamp	Session
12:00 ~ 12:15pm	Setup and Support
12:15 ~ 1:00pm	Introduction to HCC resources for ML and AI (45 Min)
1:00 ~ 1:15pm	Short Break (15 Min)
1:15 ~ 2:00pm	ML and AI workflows (45 Min)
2:00 ~ 2:10pm	Short Break (10 Min)
2:10 ~ 2:50pm	Introduction to PyTorch (40 Min)
2:50 ~ 3:00pm	Break (10 Min)
3:00 ~ 3:50pm	Introduction to PyTorch cont. (50 Min)
3:50 ~ 4:00pm	Break (10 Min)
4:00 ~ 4:15pm	Introduction to National Research Platform (NRP)
4:15 ~ 4:30pm	Open Questions

Takeaways

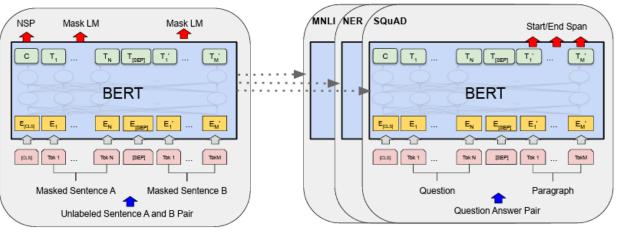
In this session, you will:

- Practice a Natural Language Processing (NLP) task: Classify texts using a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model
- Hands-on AI/ML development workflow from design, data preparation to model training and evaluation
- Learn how to transfer pre-trained model and fine tuning using
 PyTorch step-by-step
- Hands-on practice case study on text classification

Hands-On Practice 2

Overview:

- Task: Classify review comments as positive or negative
- Data: IMDb reviews*
- We will transfer a pre-trained BERT model in PyTorch to classify review comments of movies into positive or negative comments



Pre-training Fine-Tuning

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171-4186. 2019.

^{*} https://www.kaggle.com/datasets/atulanandjha/imdb-50k-movie-reviews-test-your-bert

Design

- We are looking at a text categorization task
- Models have different advantages at specific task types:
 - Categorization BERT
 - Generation Generative Pre-trained Transformer (GPT)
- Or we can look for the state-of-the-art design in the similar tasks
 - IMDb is commonly used to benchmark BERT models

IMDb

Let's take a look into IMDb in Jupyter Lab

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

For text classification, we need to prepare tokenization:

- **Tokenization**: raw texts → understandable by the model
 - Splitting sentences into words/subword-chunks
 - Encoding the chunk into numerical representation
- Typical steps:
 - Using a tokenizer provided with the pre-trained model (e.g., BERT tokenizer)
 - Generating token IDs, attention masks, and padding sequences to a uniform length
 - Making sure input data matches the model's expected input format

Model Selection

BERT model:

- Bidirectional Encoder Representations from Transformers
- Captures complex language semantics thanks to its design, bidirectional context
- Excellent performance on sentiment analysis
- Reduced need for extensive labeled data with transfer learning

Training and Validation

Difference among training, validation and testing sets

Set	Purpose	Usage	Typical Size
Training Set	Used for model learning; model parameters are adjusted based on this data.	Directly used during the training phase.	Largest portion (~60-80%)
Validation Set	Used to tune hyperparameters and prevent overfitting during training.	Evaluated periodically to guide model adjustments.	Moderate portion (~10-20%)
Testing Set	Used to evaluate the final model performance objectively.	Only used after training is fully completed.	Moderate portion (~10-20%)

Training and Validation

Similar to previous hands-on practice:

Models learn from the **training set**. Then, we use **validation set** to monitor performance in real time. Based on this performance, we tune the hyper-parameters of the model to help models learn effectively.

This session, we will also practice on monitoring the model using TensorBoard

TensorBoard

1. In Swan's Open OnDemand portal:

https://swan-ood.unl.edu/

2. Select "Interactive Apps" → "TensorBoard: Swan"

Open OnDemand Settings

Parameter	Value
Tensorflow version	tensorflow-gpu/py311/2.17
Tensorboard logdir	/work/groupname/username/hcc-ai- ml-workshop-2025/log
Number of cores	4
Running time in hours	1
Requested RAM in GBs	16
QoS type	short
Partition selection	Leave BLANK
Reservation	Leave BLANK
GRES	Leave BLANK
Job Constraints	Leave BLANK

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Training and Validation

- Let's practice in Jupyter Lab
- TensorBoard should be updating as the training progresses.

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

Evaluation

Same as the previous practice:

We evaluate the effectiveness of the model using **the testing set**. It's <u>crucial</u> that the testing set **remains completely unseen** throughout the training and validation phases to avoid data contamination for accurate evaluation.

• Let's evaluate the model we just trained

If you **are done**, please put up your yellow sticky note.

If you **need help**, please put up your red sticky note.

More Tips

- BERT has many variants now, choose the one that benefits your project
- BERT often has input length limit, truncates the long inputs into splits
- Tuning to set optimal hyper-parameters using a validation set is important
- Dataset balance is crucial to reduce over-sampling or under-sampling during training

Summary

In this session:

- we practiced text classification using a pre-trained BERT model with PyTorch.
- we used GPU resources provided by HCC to accelerate the training process.

Schedule

timestamp	Session
12:00 ~ 12:15pm	Setup and Support
12:15 ~ 1:00pm	Introduction to HCC resources for ML and AI (45 Min)
1:00 ~ 1:15pm	Short Break (15 Min)
1:15 ~ 2:00pm	ML and AI workflows (45 Min)
2:00 ~ 2:10pm	Short Break (10 Min)
2:10 ~ 2:50pm	Introduction to PyTorch (40 Min)
2:50 ~ 3:00pm	Break (10 Min)
3:00 ~ 3:50pm	Introduction to PyTorch cont. (50 Min)
3:50 ~ 4:00pm	Break (10 Min)
4:00 ~ 4:15pm	Introduction to National Research Platform (NRP)
4:15 ~ 4:30pm	Open Questions