bIVERSITY]OF

HOLLAND COMPUTING CENTER

- hcc.unl. edu
Hanying Chen, Yi Liu, Caughlin Bohn TEL

Showmic Islam, Natasha Pavlovikj, Caughlin Bohn '

Schedule
¢ 12:00~ 12:15pm Setup and Support
] 12:15~1:00pm |ntroduction to HCC resources for ML and Al (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and Al workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

. 4:00~ 4:15pm Introduction to National Research Platform (NRP)
g 4:1574:30pm Open Questions

Welcomel

* Hands-on Al practice on HCC

 Computer Vision —image classification using CNN
* Natural Language Processing (NLP) — text
classification using BERT

How can the Holland Computing Center help you?

_

[—
Computing Consulting Training

Setup

In this session, we will use Jupyter Lab via Swan’s Open OnDemand
portal for hands-on practice.

* At the end of the last session, we finished setting up the
environment

* Now, please verify whether the data has been successfully
downloaded in the "00_prepare_datasets.ipynb" notebook

o You should see output confirming that the datasets are
downloaded

If you are donfa, please put up . If you need help, please put up
your yellow sticky note. your red sticky note.

eawys

In this session, you will:
* Practice a computer vision task: Classify images using a
Convolutional Neural Network (CNN)

Explore the Al/ML development workflow from design, data
preparation to model training and evaluation

Learn how to build and train a CNN using PyTorch step-by-step

Hands-on practice case study on CIFAR-10 image classification

Recap:
Command Line vs. Open OnDemand

Command line:
* Allow extended running time using SLURM (7 days maximum)
e Better for running experiments

Jupyter Lab in Open OnDemand:
 GUlinterface

e Limited running time (8 hours maximum)
e Better for developing code

In this session, we will use Jupyter Lab

* Interactive environment ideal for exploring PyTorch models
step-by-step

 We can write, run, and visualize the PyTorch code

Deeloent Workflow

Depending on the task, purpose, and data, the workflow has five
steps in general:
1. Design:
define objectives of the task
Data preparation:
collect, label, and pre-process data

Model selection:
select Al/ML algorithms based on the task
Training
explore effective hyper-parameters
train the model on the data
Evaluation
test the model on unseen data to evaluate the model’s
ability on generalization

Hands-On Practice 1

Overview:

Task: Categorize natural scene images
Data: CIFAR10*

We will build a convolutional neural network (CNN) in PyTorch to classify
images in the CIFAR10 dataset into 10 different classes

C3: . maps 16@ 10x10
C1: feature maps

F5: layer OUTPUT
120 Fﬁi layer 10

|
Full connection Gaussian connections

Convolulions Subsampling Comvolutions Subsampling Full connection
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

* Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images."
(2009): 7.

sig

Ways to identify design based on the purpose and task:
 We are looking at an image categorization task

* Models have different advantages at specific task types:
e Categorization — Convolutional Neural Network (CNN)
* Segmentation — U-Net
* Generation — Diffusion model

* Or we can look for the state-of-the-art design in the similar
tasks

* CIFAR10 is commonly used to benchmark CNNs

CIFAR10

Let’s take a look into CIFAR10 in Jupyter Lab

B L || F
automobile ,»IET_‘.‘. EB‘
o Sl WS B L
« EHEGHSEEEsP
Dol Jog BN Tl

) T3 [o [AP
SEERRUD A6 E

b 5 o ulle y 2D

RO REETER

= P

% i B = S

If you are donfe, please put up . If you need help, please put up
your yellow sticky note. your red sticky note.

Data Preparation
Data preparation can involve different parts, for example:

Pre-processing: Clean data — removing noise, eliminating
duplicates, and ensuring proper labeling

Data Balancing: Even class distribution to prevent model bias

Data Normalization: Rescale values
(e.g., mapping pixel values from 0-255 to a range of -1 to 1)

Data Splitting: Divide the dataset into training and validation sets
for model training, and a separate test set for evaluation

Data Augmentation: Enrich dataset variety

Data Preparation

Data preparation can involve different parts, for example:

 Data Normalization: Rescale values
(e.g., mapping pixel values from 0-255 to a range of -1 to 1)

Data Preparation

Let’s prepare data and its data loader in Jupyter Lab

transform = transforms.Compose(]

transforms.ToTensor(),
transforms.Normalize((©.5, 8.5, 8.5), (8.5, 8.5, 8.5)),

trainset = torchvision.datasets.CIFAR18(root="./data’', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.Dataloader(trainset, batch sizezbatch size,

shuffle=True, num workers=2)

testset = torchvision.datasets.CIFAR1@(root="'./data’, train=False,
download=True, transform=transform)
testloader = torch.utils.data.Dataloader(testset, batch size=zbatch size,

shuffle=False, num_workers=2)

If you are donfe, please put up - If you need help, please put up
your yellow sticky note. your red sticky note.

Modl Selectio

General ideas:

Current state-of-the-art: e.g., “paper with code”
https://paperswithcode.com/sota

Hardware constraints: check available GPUs on HCC
https://hcc.unl.edu/docs/submitting jobs/submitting gpu jobs/

Data sample size: more complex model more training data
needed

Existing similar projects: use models known effective to similar
tasks

Hybrid or custom approach: develop a new model by combining
the above

https://paperswithcode.com/sota
https://hcc.unl.edu/docs/submitting_jobs/submitting_gpu_jobs/

Model Selection

For practice purposes, let's explore building our own
models using PyTorch

class CustomCNN(nn.Module):
def _ init_ (self):
super(CustomCNN, self). init_ ()
self.layerl = self.ConvModule(in_features=3, out_features=64)
self.layer2 = self.ConvModule(in_features=64, out_features=128)
self.ConvModule(in features=128, out features=256)
self.ConvModule(in_features=256, out_features=512)
self.classifier = nn.Sequential(nn.Flatten(),
nn.Linear(2%2%512, 1624),
nn.RelLU(),
nn.Linear (1624, 512),
nn.RelLU(),
nn.Linear(512,10),
nn.Softmax())

self.layer3 =

self.layerd

forward(self, x):
= self.layerl(x)
self.layer2(x)
self.layer3(x)
self.layerd(x)
= self.classifier(x)
return x
ConvModule(self, in_features, out_features):
return nn.Sequential(nn.Conv2d(in_channels=in_features,
out_channels=out_features,
kernel_size=3, padding=1),
nn.BatchNorm2d(out_features),
nn.RelLU(),
nn.MaxPool2d(2,2))

If you are done, please put up If you need help, please put up

—

your yellow sticky note. your red sticky note.

Training

Difference among training and testing sets

Purpose Usage Typical Size

Used for model learning;
Training Set model parameters are adjusted
based on this data.

Directly used during the Largest portion
training phase. (~60-80%)

Moderate
portion
(~¥10-20%)

Used to evaluate the final Only used after training is

el e model performance objectively. fully completed.

Training

In general:

Models learn from the training set. We can tune the hyper-
parameters of the model to help models learn effectively.

Let’s see
* how different hyperparameters affect the model's performance

* how to use GPU acceleration

If you are don.e, please put up . If you need help, please put up
your yellow sticky note. your red sticky note.

Evaluation

We evaluate the effectiveness of the model using the testing
set. It's crucial that the testing set remains completely
unseen throughout the training and validation phases to
avoid data contamination for accurate evaluation.

e Let’s evaluate the model we just trained

If you are donfe, please put up . If you need help, please put up
your yellow sticky note. your red sticky note.

re Tis

e Testing performance are often lower than the training
performance (e.g., accuracy), why?

Overfitting can reduce the model's ability to
generalize effectively to new, unseen data.

* Tuning or performing a grid search for optimal model
selection and hyperparameter configurations is often
necessary to achieve the best model performance.

umay

In this session:

 we practiced image classification using a custom CNN
model built with PyTorch.
we used GPU resources provided by HCC to accelerate
the training process.

In our next session, we'll explore text classification using a
pre-trained BERT model.

Schedule -
¢ 12:00~ 12:15pm Setup and Support
] 12:15~1:00pm |ntroduction to HCC resources for ML and Al (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and Al workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

. 4:00~ 4:15pm Introduction to National Research Platform (NRP)
g 4:1574:30pm Open Questions

Schedule
¢ 12:00~ 12:15pm Setup and Support
] 12:15~1:00pm |ntroduction to HCC resources for ML and Al (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and Al workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

. 4:00~ 4:15pm Introduction to National Research Platform (NRP)
g 4:1574:30pm Open Questions

eawys

In this session, you will:

* Practice a Natural Language Processing (NLP) task: Classify texts
using a pre-trained Bidirectional Encoder Representations from
Transformers (BERT) model

* Hands-on Al/ML development workflow from design, data
preparation to model training and evaluation

* Learn how to transfer pre-trained model and fine tuning using
PyTorch step-by-step

* Hands-on practice case study on text classification

Hands-On Practice 2

Overview:
Task: Classify review comments as positive or negative
Data: IMDb reviews*

We will transfer a pre-trained BERT model in PyTorch to classify review
comments of movies into positive or negative comments

@ Mask LM Mask LM ﬁl/@@ﬁﬂ startEnd Soan \
e L — * oo

&
CE]- GGl G OE)- Gle=d- ()

BERT 1 BERT

[saal[& | [&[]l] [=i] leaal & | (& []le |- [ad]

[ea)(m].. [ou](Com)fmer].. (o] ()30 (m)(Cm)(m) . ()

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Cluestion Answer Pair

Pre-training Fine-Tuning
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional
transformers for language understanding." In Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: human language technologies, volume 1 (long and
short papers), pp. 4171-4186. 2019.

* https://www.kaggle.com/datasets/atulanandjha/imdb-50k-movie-reviews-test-your-bert

sig

* We are looking at a text categorization task

* Models have different advantages at specific task types:

* (Categorization — BERT
* Generation — Generative Pre-trained Transformer (GPT)

 Or we can look for the state-of-the-art design in the similar
tasks
* IMDb is commonly used to benchmark BERT models

IMDb

Let’s take a look into IMDb in Jupyter Lab

If you are donfe, please put up - If you need help, please put up
your yellow sticky note. your red sticky note.

Data Preparation

For text classification, we need to prepare tokenization:

* Tokenization: raw texts = understandable by the model
» Splitting sentences into words/subword-chunks
* Encoding the chunk into numerical representation

* Typical steps:
* Using a tokenizer provided with the pre-trained model (e.g.,

BERT tokenizer)
* Generating token IDs, attention masks, and padding

sequences to a uniform length
* Making sure input data matches the model's expected input

format

Modl Selectio

BERT model:
* Bidirectional Encoder Representations from Transformers

Captures complex language semantics thanks to its design,
bidirectional context

Excellent performance on sentiment analysis

Reduced need for extensive labeled data with transfer learning

Training and Validation

Difference among training, validation and testing sets

Purpose Usage

Used for model learning;
Training Set model parameters are adjusted
based on this data.

Directly used during the
training phase.

Used to tune hyperparameters
Validation Set and prevent overfitting during
training.

Evaluated periodically to

Used to evaluate the final Only used after training is

Testine Set .
esting >¢e model performance objectively. fully completed.

guide model adjustments.

Typical Size

Largest portion
(~60-80%)

Moderate
portion
(~¥10-20%)

Moderate
portion
(~10-20%)

Trainin nd Validation

Similar to previous hands-on practice:

Models learn from the training set. Then, we use validation
set to monitor performance in real time. Based on this
performance, we tune the hyper-parameters of the model to
help models learn effectively.

* This session, we will also practice on monitoring the
model using TensorBoard

TensorBoard

1. In Swan’s Open OnDemand portal:
https://swan-ood.unl.edu/
2. Select “Interactive Apps” =2 “TensorBoard: Swan”

Open OnDemand Settings

Parameter Value

Tensorflow version tensorflow-gpu/py311/2.17

/work/groupname/username/hcc-ai-

Tensorboard logdir ml-workshop-2025/log

Number of cores 4

Running time in hours 1

Requested RAM in GBs 16

QoS type short

Partition selection -—-Leave BLANK---

Reservation ---Leave BLANK---

GRES -—-Leave BLANK---

Job Constraints -—-Leave BLANK---

If you are dong, please put up - If you need help, please put up
your yellow sticky note. your red sticky note.

https://swan-ood.unl.edu/
https://swan-ood.unl.edu/
https://swan-ood.unl.edu/

Training nd Validation

* Let’s practice in Jupyter Lab
* TensorBoard should be updating as the training progresses.

If you are donf-z, please put up - If you need help, please put up
your yellow sticky note. your red sticky note.

Evaluation

Same as the previous practice:

We evaluate the effectiveness of the model using the testing
set. It's crucial that the testing set remains completely
unseen throughout the training and validation phases to
avoid data contamination for accurate evaluation.

e Let’s evaluate the model we just trained

If you are donfa, please put up . If you need help, please put up
your yellow sticky note. your red sticky note.

More Tips

BERT has many variants now, choose the one that
benefits your project

BERT often has input length limit, truncates the long
inputs into splits

Tuning to set optimal hyper-parameters using a
validation set is important

Dataset balance is crucial to reduce over-sampling or
under-sampling during training

Sumary

In this session:

* we practiced text classification using a pre-trained BERT
model with PyTorch.
we used GPU resources provided by HCC to accelerate

the training process.

Schedule -
¢ 12:00~ 12:15pm Setup and Support
] 12:15~1:00pm |ntroduction to HCC resources for ML and Al (45 Min)

1:00 ~ 1:15pm Short Break (15 Min)

1:15 ~ 2:00pm ML and Al workflows (45 Min)

2:00 ~ 2:10pm Short Break (10 Min)

2:10 ~ 2:50pm Introduction to PyTorch (40 Min)

2:50 ~ 3:00pm Break (10 Min)

3:00 ~ 3:50pm Introduction to PyTorch cont. (50 Min)

3:50 ~ 4:00pm Break (10 Min)

. 4:00~ 4:15pm Introduction to National Research Platform (NRP)
g 4:1574:30pm Open Questions

	Slide 1
	Slide 2: Schedule
	Slide 3: Welcome!
	Slide 4: Setup
	Slide 5: Takeaways
	Slide 6: Recap: Command Line vs. Open OnDemand
	Slide 7: Development Workflow
	Slide 8: Hands-On Practice 1
	Slide 9: Design
	Slide 10: CIFAR10
	Slide 11: Data Preparation
	Slide 12: Data Preparation
	Slide 13: Data Preparation
	Slide 14: Model Selection
	Slide 15: Model Selection
	Slide 16: Training
	Slide 17: Training
	Slide 18: Evaluation
	Slide 19: More Tips
	Slide 20: Summary
	Slide 21: Schedule
	Slide 22: Schedule
	Slide 23: Takeaways
	Slide 24: Hands-On Practice 2
	Slide 25: Design
	Slide 26: IMDb
	Slide 27: Data Preparation
	Slide 28: Model Selection
	Slide 29: Training and Validation
	Slide 30: Training and Validation
	Slide 31: TensorBoard
	Slide 32: Training and Validation
	Slide 33: Evaluation
	Slide 34: More Tips
	Slide 35: Summary
	Slide 36: Schedule

