

Introduction to the Open Science Grid

HCC Kickstart October 22nd, 2020

Emelie Fuchs <<u>efuchs@unl.edu</u>> OSG Research Facilitator UNL Holland Computing Center – Applications Specialist

Outline

- What is the OSG?
- Who uses OSG?
- Owned vs. Opportunistic Use
- Characteristics of OSG-Friendly Jobs
- Is OSG Right for Me?

The Open Science Grid

A framework for large scale distributed resource sharing addressing the technology, policy, and social requirements of sharing computing resources.

- The OSG is a consortium of software, service and resource providers and researchers, from universities, national laboratories and computing centers across the U.S., who together build and operate the OSG project.
- Funded by the NSF and DOE.

> 50 research communities> 130 sites> 100,000 cores accessible

The Open Science Grid

Over 1.8 billion CPU hours per year!!

Who is Using the OSG?

- Astrophysics
- Biochemistry
- Bioinformatics
- Earthquake Engineering
- Genetics
- Gravitational-wave physics
- Mathematics
- Nanotechnology
- Nuclear and particle physics
- Text mining
- Covid-19

ATLAS Detector Copyright CERN Permission Information

STAR Collision Image Credit Brookhaven National Laboratory/STAR Collaboration Permission Information

SDSS Telescope Image Credit Fermilab Permission Information

<u>CDMS photo</u> Image Credit Fermilab <u>Permission Information</u>

BioMOCA Application in nanoHUB Image Credit Shawn Rice, Purdue University Permission Information

CMS Detector Copyright CERN Permission Information

Image Credit https://www.cdc.gov/

Auger photo Image Credit Pierre Auger Observatory Permission Information

MiniBooNE photo Image Credit Fermilab Permission Information

DZero Detector Image Credit Fermilab Permission Information

OSG Usage

CPU Hours by VO in past 30 days

- VO = Virtual Organization
- Most OSG use is on *dedicated resources* (used by resource owners) – 'atlas', 'cms'
- About 15% is opportunistic use – 'osg', 'hcc', 'glow'

High Throughput Computing

Sustained computing over long periods of time. Usually serial codes, or low number of cores threaded/MPI.

vs. High Performance Computing

Great performance over relative short periods of time. Large scale MPI.

• Distributed HTC

- No shared file system
- Users ship input files and (some) software packages with their jobs.

• Opportunistic Use

- Applications (esp. with long run times) can be preempted (or killed) by resource owner's jobs.
- > Applications should be relatively short or support being restarted.

Open Science Grid

- High Throughput Computing
 - Sustained computing over long periods of time. Usually serial codes, or low number of cores treaded/MPI.
 - vs. High Performance Computing
 - Great performance over relative short periods of time. Large scale MPI.

• Distributed HTC

- No shared file system
- Users ship input files and (some) software packages with their jobs.
- Opportunistic Use
 - Applications (esp. with long run times) can be preempted (or killed) by resource owner's jobs.
 - > Applications should be relatively short or support being restarted.

Open Science Grid

- High Throughput Computing
 - Sustained computing over long periods of time. Usually serial codes, or low number of cores treaded/MPI.
 - vs. High Performance Computing
 - Great performance over relative short periods of time. Large scale MPI.
- Distributed HTC
 - > No shared file system
 - Users ship input files and (some) software packages with their jobs.

• Opportunistic Use

- Applications (esp. with long run times) can be preempted (or killed) by resource owner's jobs.
- > Applications should be relatively short or support being restarted.

Open Science Grid

- Run-time: 1-12 hours
- Single-core
- Require <2 GB Ram
- Statically compiled executables (transferred with jobs)
- Non-proprietary software

- Run-time: 1-12 hours
- Single-core
- Require <2 GB Ram
- Statically compiled executables (transferred with jobs)
- Non-proprietary software

These are not hard limits!

- Checkpointing for long jobs that are preempted
 - Many applications support built-in checkpointing
 - Job image is saved periodically so that it can be restarted on a new host after it is killed (without losing the progress that was made on the first host)
- Limited support for larger memory jobs
- "Partitionable" slots for parallel applications using up to 8 cores
- Modules available a collection of pre-installed software packages
- Can run compiled Matlab executables

Is OSG right for me?

For more information on the Open Science Grid: <u>https://www.opensciencegrid.org/</u>

For instructions on submitting jobs to OSG: https://go.unl.edu/hcc-osgsubmit

