
High Performance Computing Core

Important Links
•Workshop Website
•http://hcc.unl.edu/hcc-kickstart-2020

•Command History
•https://hcc.unl.edu/swc-history/20201021.html

•HCC Documentation
•http://hcc.unl.edu/docs/

• Job Examples
•https://github.com/unlhcc/job-examples

http://hcc.unl.edu/hcc-kickstart-2020
https://hcc.unl.edu/swc-history/20201021.html
http://hcc.unl.edu/docs/
https://github.com/unlhcc/job-examples

Learning Objectives

Session 1 – Wednesday, October 21st

• Introduction to high performance computing

• What is a supercomputing cluster?

• Who is HCC and what services do we provide

• Using the SLURM job scheduler

• Interactive jobs

• Submitting batch jobs

Session 2 – Thursday, October 22nd

• Data storage on Crane

• Transferring files to and from Crane

• scp

• Introduction to Globus

• Using Applications on Crane

• module system

What is High Performance Computing?

High Performance Computing most generally refers to the practice of

aggregating computing power

in a way that delivers much higher performance

than one could get out of a typical desktop computer or workstation

in order to solve large problems in science, engineering, or business.

https://insidehpc.com/hpc-basic-training/what-is-hpc/

What is a Computing Cluster?

Crane
• HCC's newest and fastest resource
• 572 node Intel cluster
• 16-36 cores per node
• 64 GB to 1.5 TB RAM per node
• 1452 TB shared storage

• 4 TB scratch per node

Red
• Used to store and analyze data from

and run simulations for the CMS
detector at the Large Hadron Collider

• 344 node Linux cluster
• 7,280 cores
• 11 PB raw storage

Rhino
• 110 node AMD cluster
• 4 CPU/64 cores per node
• 256 GB RAM in most nodes

• 2 nodes with 512 GB RAM
• 2 nodes with 1024 GB RAM

• 360 TB shared storage
• 1.5 TB scratch per node.

Total Resources

almost 30k cores
approximately 15 PetaBytes of storage
64 GB to 1 terabyte memory per node

• HCC’s Cloud: uses the OpenStack framework

• Customizable virtual machines

• For projects not well served by a traditional
Linux environment:
• interactive environments or alternate operating

systems
• projects that require root access or dedicated

resources
• test cluster environments

• Near-line data archive

• Backed up in Lincoln and Omaha for disaster
tolerance

• 10 Gb/s transfer speed to and from the
clusters when using Globus Connect

• Cost lower than commercial cloud services

Anvil Attic

What we provide
• Free shared resources to all NU students, staff and faculty
• Dedicated resources maintained by HCC's System Administrators
• Educational services through hands-on workshops and group tutorials
• Consultations with Research Computing experts
• Extended computing resources offered through partnerships with:

High Throughput (Grid) Computing spanning
over 125 Institutions nationwide

Petascale HPC Computing, Training and
Collaborative Support Service

Research Done at HCC

Running Jobs
• All software and analysis must be done on the worker nodes

• Processes started on the login node will be killed

• Limit usage to brief, non-intensive tasks like file management and editing text
files

SLURM
Simple Linux Utility for Resource Management

• Open source, scalable cluster management and job scheduling system

• Used on ~60% of the TOP500 supercomputers

• Jobs are assigned based on user priority

Interactive vs Batch Jobs

Interactive Jobs

• Run commands
and see output
immediately on
screen
• Uses srun

Batch Jobs

• Submit a script
containing
commands, wait
for the job to
finish, then view
output from a file
• Uses sbatch

https://hcc.unl.edu/docs/submitting_jobs/creating_an_interactive_job/
https://hcc.unl.edu/docs/submitting_jobs/

Interactive Jobs

• Once resources are allocated,
commands can be input
interactively

• Output is directed to the screen

• Once the requested time is up, you
will receive a 32 second warning
before the job is killed.

Batch Jobs
• To create a batch job, the user must first make a submit script
• Submit scripts include all job resource information and necessary commands
• If the job exceeds the requested memory or time, it will be killed.

• Submit script is then added to the job queue using the sbatch
command

• squeue will show queued and running jobs

• sacct can be used to find information about completed jobs

Submit Scripts
Shebang

The shebang tells Slurm what
interpreter to use for this file.
This one is for the shell (Bash)

SBATCH options
These must be immediately
after the shebang and before
any commands.

The only required SBATCH
options are time, nodes and
mem, but there are many
that you can use to fully
customize your allocation.

Commands
Any commands after the
SBATCH lines will be executed
by the interpreter specified in
the shebang – similar to what
would happen if you were to
type the commands
interactively

Common SBATCH Options
Command What it does
--nodes Number of nodes requested

--time Maximum walltime for the job – in DD-HHH:MM:SS format – maximum of 7 days on batch partition

--mem
Real memory (RAM) required per node - can use KB, MB, and GB units – default is MB
Request less memory than total available on the node -
The maximum available on a 512 GB RAM node is 500, for 256 GB RAM node is 250

--ntasks Number of tasks – used to request a specific number of cores

--mem-per-cpu Minimum of memory required per allocated CPU – default is 1 GB

--output Filename where all STDOUT will be directed – default is slurm-<jobid>.out

--error Filename where all STDERR will be directed – default is slurm-<jobid>.out

--job-name How the job will show up in the queue

For more information:
• sbatch –help
• SLURM Documentation: https://slurm.schedmd.com/sbatch.html

https://slurm.schedmd.com/sbatch.html

Determining Parameters
How many nodes/memory/time should I request?

• Short answer: We don’t know.

• Long answer: The amount of time and memory required is highly
dependent on the application you are using, the input file sizes and
the parameters you select.
• Talk with someone else who has used the software before
• Trial and error

• Start with a bit more than what you’ve used before and increment as needed
• Check utilization after each job:

https://hcc.unl.edu/docs/submitting_jobs/monitoring_jobs/

https://hcc.unl.edu/docs/submitting_jobs/monitoring_jobs/

Additional SBATCH Options
Argument Details

--begin:<time>

The controller will wait to allocate the job until the specified time
• Specific Time: HH:MM:SS
• Specific Date: MMDDYY or MM/DD/YY or YYY-MM-DD
• Specific Date and Time: YYYY-MM-DD[THH:MM:SS]

Keywords can be used – now, today, tomorrow – Can also be relative in format “now+<time>”

--deadline=<time>

Remove the job if it cannot finish before the deadline
Valid time formats:

• HH:MM[:SS] [AM|PM]
• MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]
• MM/DD[/YY]-HH:MM[:SS]
• YYYY-MM-DD[THH:MM[:SS]]]

--hold Will hold the job in “held state” until released manually using the command scontrol release <job_id>

--immediate Will only release the job if the resources are immediately available

--mail-type=<type>
Notify user by email when certain event types occur.
Valid type include: BEGIN, END, FAIL, ALL, TIME_LIMIT, TIME_LIMIT_X (When X% of the time is up, where X is 90, 80, or 50)

--mail-user=<user_email> Specify an email to send event notifications to
--open-mode=<append|truncate> Specify how to open output files – default is truncate

--test-only
Validates the script and returns a starting estimate based on the current queue and job requirements
Does not submit the job

--tmp=<MB> Minimum amount of temporary disk space on the allocated node

Environmental Variables

• Can be used in the command section of a submit file (passed to scripts or
programs via arguments)

• Cannot be used within an #SBATCH directive
• Use Replacement Symbols instead

Environment Variable Description
$SLURM_JOB_ID batch job id assigned by Slurm upon submission

$SLURM_JOB_NAME user-assigned job name
$SLURM_NNODES number of nodes

$SLURM_NODELIST list of nodes
$SLURM_NTASKS total number of tasks
$SLURM_QUEUE queue (partition)

$SLURM_SUBMIT_DIR directory of submission
$SLURM_TASKS_PER_NODE number of tasks per node

Replacement Symbols

• A number can be placed between % and the following character to zero-pad the result

• For example:
• job%j.out would create job7773455.out for job_id=7773455
• job%9j.out would create job007773455.out for job_id=7773455

Symbol Value

%A Job array’s master job allocation number

%a Job array ID (index) number
%j Job allocation number (job id)

%N Node name – will be replaced by the name of the first node in the job
(the one that runs the script)

%u User name
%% The character “%”

Advanced SLURM Options
Job Arrays: https://hcc.unl.edu/docs/submitting_jobs/submitting_a_job_array/

• Submits a specified number of identical jobs

• Usage: #SBATCH --array=<array numbers or ranges>

• To cancel array jobs: scancel <job_id>_<array numbers>

Dependencies: https://hcc.unl.edu/docs/submitting_jobs/job_dependencies/

• Queues jobs that depend on the completion of previous job(s)

• Usage: #SBATCH --dependency=<when_to_execute>:<job_id>
• After successful completion – afterok:<job_id>

• After non-successful completion – afternotok:<job_id>

https://hcc.unl.edu/docs/submitting_jobs/submitting_a_job_array/
https://hcc.unl.edu/docs/submitting_jobs/job_dependencies/

Canceling Jobs: scancel
• Use to cancel jobs prior to completion
• Usage: scancel <job_id>
• Use other arguments to cancel multiple jobs at once or combine both

to prevent accidentally canceling the wrong job
• Other arguments:

Argument Cancel…

--name=<job_name> jobs with this name

--partition=<partition> jobs in this partition

--user=<user_name> jobs of this user

--state=<job_state> jobs in this state
Valid states: PENDING, RUNNING, and SUSPENDED

squeue
Job ID

The ID number assigned
to your job by Slurm

Partition
The partition the job is

running on or assigned to

Name
The name you gave the job as
specified in the submit script

User
The user that
owns the job

State
The current status of the job.

Common states include:
CD – Completed
CA – Canceled

F – Failed
PD – Pending
R – Running

Nodes
The number of nodes
the job is running on

Nodelist
If the job is running:

the names of the nodes the
job is running on

If the job is pending:
the reason the job is pending

Time
The length of time the
job has been running

For more information: https://slurm.schedmd.com/squeue.html

https://slurm.schedmd.com/squeue.html

Common Reason Codes
Job Reason Codes Description

Dependency This job is waiting for a dependent job to complete.

NodeDown A node required by the job is down.

PartitionDown
The partition (queue) required by this job is in a DOWN state and temporarily
accepting no jobs, for instance because of maintainance. Note that this message
may be displayed for a time even after the system is back up.

Priority One or more higher priority jobs exist for this partition or advanced reservation.
Other jobs in the queue have higher priority than yours.

ReqNodeNotAvail No nodes can be found satisfying your limits, for instance because maintainance is
scheduled and the job can not finish before it

Reservation The job is waiting for its advanced reservation to become available.

More information:
• squeue --help
• https://slurm.schedmd.com/squeue.html

https://slurm.schedmd.com/squeue.html

Common squeue Options
Option Displays information about…

-u <user_name>
--user=<user_name> jobs owned by the specified user_name(s) *

-j <job_list> specified job(s) *

-p <part_list> jobs in a specified partition(s) *

-t <state_list> jobs in the specified state(s) – {PD, R, S, CG, CD, CF, CA, F, TO, PR, NF} *

-i <interval>
--interate= <interval> jobs repeatedly reported at intervals (in seconds)

-S <sort_list>
--sort=<sort_list> jobs sorted by specified field(s) *

--start pending jobs and scheduled start times

* Indicates arguments that can take a comma-separated list

For more options: https://slurm.schedmd.com/squeue.html

https://slurm.schedmd.com/squeue.html

Using srun to monitor batch jobs
1. Connect to the node running the job:

• srun -j <job_id> --pty bash {or top}
• srun -nodelist=<node_id> --pty bash {or top}

2. Monitor:
• top (if not already running)

• Use to monitor core use – ideal for multi-core processes
• Press ‘u’ to search for your username

• cat /cgroup/memory/slurm/uid_<uid>/job_<job_id>/memory.max_usage_in_bytes
• Use to monitor memory use
• To determine your uid use: id -u <user_name>
• Match with watch

• -n to specify a refresh interval - default is 2 seconds
• CTRL + C to exit

Exercises
1. Clone the job-examples repo in your $WORK directory with the command:

git clone http://github.com/unlhcc/job-examples

2. `cd` into the job-examples directory and look at the subdirectories. How many
different job examples are there? What applications do you recognize or use?

3. `cd` into one of the example directories (such as `R` or `python`) and examine the
contents of the files there, focusing on the one ending in `.submit`. Identify what
resources are being requested. Can you interpret what this job is going to do?

Once you have finished, please click “yes” in the Zoom participants panel.

If you have issues, please click “no” in the Zoom participants panel.

