Submitting R Jobs

Submitting an R job is very similar to submitting a serial job shown on Submitting Jobs.

Running R scripts in batch

There are two primary commands to use when submitting R scripts: Rscript and R CMD BATCH. Both commands will execute the passed script but differ in the way they process output.

Running R scripts using R CMD BATCH

When utilizing R CMD BATCH all output will be directed to an .Rout file named after your script unless otherwise specified. For example:

serial_R.submit
#!/bin/bash
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob

module load R/3.5
R CMD BATCH Rcode.R

In the above example, output for the job will be found in the file Rcode.Rout. Notice that we did not specify output and error files in our SLURM directives, these are not needed as all R output will go into the .Rout file. To direct output to a specific location, follow your R CMD BATCH command with the name of the file where you want output directed to, as follows:

serial_R.submit
#!/bin/bash
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob

module load R/3.5
R CMD BATCH Rcode.R Rcodeoutput.txt

In this example, output from running the script Rcode.R will be placed in the file Rcodeoutput.txt.

To pass arguments to the script, they need to be specified after R CMD BATCH but before the script to be executed, and preferably preceded with --args as follows:

serial_R.submit
#!/bin/bash
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob

module load R/3.5
R CMD BATCH "--args argument1 argument2 argument3" Rcode.R Rcodeoutput.txt

Running R scripts using Rscript

Using Rscript to execute R scripts differs from R CMD BATCH in that all output and errors from the script are directed to STDOUT and STDERR in a manner similar to other programs. This gives the user larger control over where to direct the output. For example, to run our script using Rscript the submit script could look like the following:

serial_R.submit
#!/bin/bash
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob
#SBATCH --error=TestJob.%J.stderr
#SBATCH --output=TestJob.%J.stdout

module load R/3.5
Rscript Rcode.R

In the above example, STDOUT will be directed to the output file TestJob.%J.stdout and STDERR directed to TestJob.%J.stderr. You will notice that the example is very similar to to the serial example. The important line is the module load command. That tells the cluster to load the R framework into the environment so jobs may use it.

To pass arguments to the script when using Rscript, the arguments will follow the script name as in the example below:

serial_R.submit
#!/bin/bash
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob
#SBATCH --error=TestJob.%J.stderr
#SBATCH --output=TestJob.%J.stdout

module load R/3.5
Rscript Rcode.R argument1 argument2 argument3

Multicore (parallel) R submission

Submitting a multicore R job to SLURM is very similar to Submitting an OpenMP Job, since both are running multicore jobs on a single node. Below is an example:

parallel_R.submit
#!/bin/bash
#SBATCH --ntasks-per-node=16
#SBATCH --nodes=1
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob
#SBATCH --error=TestJob.%J.stdout
#SBATCH --output=TestJob.%J.stderr

module load R/3.5
R CMD BATCH Rcode.R

The above example will submit a single job which can use up to 16 cores.

Be sure to use limits in your R code so you only use 16 cores, or your performance will suffer.  For example, when using the parallel package function mclapply:

parallel.R
library("parallel")
...
mclapply(rep(4, 5), rnorm, mc.cores=16)

Multinode R submission with Rmpi

Submitting a multinode MPI R job to SLURM is very similar to  Submitting an MPI Job, since both are running multicore jobs on a multiple nodes. Below is an example of running Rmpi on Swan on 2 nodes and 32 cores:

Rmpi.submit
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=16
#SBATCH --time=00:30:00
#SBATCH --mem-per-cpu=1024
#SBATCH --job-name=TestJob
#SBATCH --error=TestJob.%J.stdout
#SBATCH --output=TestJob.%J.stderr

module load compiler/gcc/4.9 openmpi/1.10 R/3.5
export OMPI_MCA_mtl=^psm
mpirun -n 1 R CMD BATCH Rmpi.R

When you run Rmpi job on Swan, please use the line export OMPI_MCA_mtl=^psm in your submit script. Regardless of how may cores your job uses, the Rmpi package should always be run with mpirun -n 1 because it spawns additional processes dynamically.

Please find below an example of Rmpi R script provided by The University of Chicago Research Computing Center:

Rmpi.R
library(Rmpi)

# initialize an Rmpi environment
ns <- mpi.universe.size()
mpi.spawn.Rslaves(nslaves=ns)

# send these commands to the slaves
mpi.bcast.cmd( id <- mpi.comm.rank() )
mpi.bcast.cmd( ns <- mpi.comm.size() )
mpi.bcast.cmd( host <- mpi.get.processor.name() )

# all slaves execute this command
mpi.remote.exec(paste("I am", id, "of", ns, "running on", host))

# close down the Rmpi environment
mpi.close.Rslaves(dellog = FALSE)
mpi.exit()